Existence results for some stochastic functional integrodifferential systems driven by Rosenblatt process

IF 0.3 Q4 STATISTICS & PROBABILITY
Amadou Diop, Mamadou Abdoul Diop, Khalil Ezzinbi, Essozimna Kpizim
{"title":"Existence results for some stochastic functional integrodifferential systems driven by Rosenblatt process","authors":"Amadou Diop, Mamadou Abdoul Diop, Khalil Ezzinbi, Essozimna Kpizim","doi":"10.1515/rose-2023-2020","DOIUrl":null,"url":null,"abstract":"Abstract This work investigates the existence and uniqueness of mild solutions to a class of stochastic integral differential equations with various time delay driven by the Rosenblatt process. We can obtain alternative conditions that guarantee mild solutions by using the resolvent operator in the Grimmer sense, stochastic analysis, fixed-point methods, and noncompact measures. We give an example to illustrate the theory.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"7 12","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This work investigates the existence and uniqueness of mild solutions to a class of stochastic integral differential equations with various time delay driven by the Rosenblatt process. We can obtain alternative conditions that guarantee mild solutions by using the resolvent operator in the Grimmer sense, stochastic analysis, fixed-point methods, and noncompact measures. We give an example to illustrate the theory.
一类Rosenblatt过程驱动的随机泛函积分微分系统的存在性结果
摘要研究了一类由Rosenblatt过程驱动的具有不同时滞的随机积分微分方程温和解的存在唯一性。利用Grimmer意义上的解算符、随机分析、不动点方法和非紧测度,我们可以得到保证温和解的替代条件。我们举一个例子来说明这个理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信