Stock Price Prediction Using Statistical and Deep Learning Models

Emre ALBAYRAK, Nurdan SARAN
{"title":"Stock Price Prediction Using Statistical and Deep Learning Models","authors":"Emre ALBAYRAK, Nurdan SARAN","doi":"10.54525/tbbmd.1031017","DOIUrl":null,"url":null,"abstract":"Borsa analizi, geleceğe yönelik tahminler yapmak için finansal, politik ve sosyal göstergeleri göz önünde bulundurarak borsayı inceler ve değerlendirir. Büyük veri ve derin öğrenme teknolojilerindeki gelişmelerin çığır açan sonuçları, araştırmacıların ve endüstrinin dikkatini bilgisayar destekli borsa analizine çekmektedir. Geleneksel makine öğrenimi ve derin öğrenme modellerini kullanarak borsa analizi konusunda çeşitli çalışmalar bulunmaktadır. Bu çalışmada, temel model olarak Otoregresif Entegre Hareketli Ortalama (ARIMA) yöntemini tekrarlayan sinir ağlarının üç farklı modeliyle karşılaştırılmıştır; Uzun Kısa Süreli Bellek (Long Short Term Memory- LSTM) ağları, Geçitli Tekrarlayan Birim (Gated Recurrent Unit- GRU), dikkat katmanlı LSTM modeli. Bu çalışmada literatürdeki diğer çalışmalardan farklı olarak 28 tane finansal indikatör kullanılarak Borsa İstanbul verileri üzerinde gün içi tahminler yaparken dört farklı modelin sonuçları karşılaştırılmıştır. İstatistiksel ve doğrusal bir model olan ARIMA, zaman serileri tahmini için doğrusal olmayan RNN modelleri ile karşılaştırılmıştır ancak 3 sinir ağı modelinden de yüksek ortalama hata oranına sahip olduğu görülmüştür. LSTM sonuçları GRU modeline çok yakın olsa da GRU diğerlerinden biraz daha iyi performans göstermektedir. Dikkat mekanizmalı sinir ağı diğer temel sinir ağlarından daha iyi sonuç vermemektedir.","PeriodicalId":485540,"journal":{"name":"Tbv bilgisayar bilimleri ve mühendisliği dergisi","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbv bilgisayar bilimleri ve mühendisliği dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54525/tbbmd.1031017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Borsa analizi, geleceğe yönelik tahminler yapmak için finansal, politik ve sosyal göstergeleri göz önünde bulundurarak borsayı inceler ve değerlendirir. Büyük veri ve derin öğrenme teknolojilerindeki gelişmelerin çığır açan sonuçları, araştırmacıların ve endüstrinin dikkatini bilgisayar destekli borsa analizine çekmektedir. Geleneksel makine öğrenimi ve derin öğrenme modellerini kullanarak borsa analizi konusunda çeşitli çalışmalar bulunmaktadır. Bu çalışmada, temel model olarak Otoregresif Entegre Hareketli Ortalama (ARIMA) yöntemini tekrarlayan sinir ağlarının üç farklı modeliyle karşılaştırılmıştır; Uzun Kısa Süreli Bellek (Long Short Term Memory- LSTM) ağları, Geçitli Tekrarlayan Birim (Gated Recurrent Unit- GRU), dikkat katmanlı LSTM modeli. Bu çalışmada literatürdeki diğer çalışmalardan farklı olarak 28 tane finansal indikatör kullanılarak Borsa İstanbul verileri üzerinde gün içi tahminler yaparken dört farklı modelin sonuçları karşılaştırılmıştır. İstatistiksel ve doğrusal bir model olan ARIMA, zaman serileri tahmini için doğrusal olmayan RNN modelleri ile karşılaştırılmıştır ancak 3 sinir ağı modelinden de yüksek ortalama hata oranına sahip olduğu görülmüştür. LSTM sonuçları GRU modeline çok yakın olsa da GRU diğerlerinden biraz daha iyi performans göstermektedir. Dikkat mekanizmalı sinir ağı diğer temel sinir ağlarından daha iyi sonuç vermemektedir.
使用统计和深度学习模型进行股票价格预测
股市分析通过考虑金融、政治和社会指标对股市进行分析和评估,从而对未来做出预测。大数据和深度学习技术的突破性进展吸引了研究人员和业界对计算机辅助股市分析的关注。目前已有一些使用传统机器学习和深度学习模型进行股市分析的研究。在本研究中,我们将自回归综合移动平均法(ARIMA)作为基本模型与三种不同的递归神经网络模型(长短期记忆(LSTM)网络、门控递归单元(GRU)和带注意层的 LSTM 模型)进行了比较。在本研究中,与其他文献研究不同的是,在使用 28 个金融指标对伊斯坦布尔证券交易所数据进行日内预测时,对四种不同模型的结果进行了比较。在时间序列预测方面,将统计线性模型 ARIMA 与非线性 RNN 模型进行了比较,结果发现 ARIMA 的平均错误率高于所有三种神经网络模型。虽然 LSTM 的结果与 GRU 模型非常接近,但 GRU 的表现略好于其他模型。具有注意力机制的神经网络的表现并不比其他基本神经网络好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信