Universal geometric graphs

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Fabrizio Frati, Michael Hoffmann, Csaba D. Tóth
{"title":"Universal geometric graphs","authors":"Fabrizio Frati, Michael Hoffmann, Csaba D. Tóth","doi":"10.1017/s0963548323000135","DOIUrl":null,"url":null,"abstract":"Abstract We extend the notion of universal graphs to a geometric setting. A geometric graph is universal for a class $\\mathcal H$ of planar graphs if it contains an embedding, that is, a crossing-free drawing, of every graph in $\\mathcal H$ . Our main result is that there exists a geometric graph with $n$ vertices and $O\\!\\left(n \\log n\\right)$ edges that is universal for $n$ -vertex forests; this generalises a well-known result by Chung and Graham, which states that there exists an (abstract) graph with $n$ vertices and $O\\!\\left(n \\log n\\right)$ edges that contains every $n$ -vertex forest as a subgraph. The upper bound of $O\\!\\left(n \\log n\\right)$ edges cannot be improved, even if more than $n$ vertices are allowed. We also prove that every $n$ -vertex convex geometric graph that is universal for $n$ -vertex outerplanar graphs has a near-quadratic number of edges, namely $\\Omega _h(n^{2-1/h})$ , for every positive integer $h$ ; this almost matches the trivial $O(n^2)$ upper bound given by the $n$ -vertex complete convex geometric graph. Finally, we prove that there exists an $n$ -vertex convex geometric graph with $n$ vertices and $O\\!\\left(n \\log n\\right)$ edges that is universal for $n$ -vertex caterpillars.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000135","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We extend the notion of universal graphs to a geometric setting. A geometric graph is universal for a class $\mathcal H$ of planar graphs if it contains an embedding, that is, a crossing-free drawing, of every graph in $\mathcal H$ . Our main result is that there exists a geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$ -vertex forests; this generalises a well-known result by Chung and Graham, which states that there exists an (abstract) graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that contains every $n$ -vertex forest as a subgraph. The upper bound of $O\!\left(n \log n\right)$ edges cannot be improved, even if more than $n$ vertices are allowed. We also prove that every $n$ -vertex convex geometric graph that is universal for $n$ -vertex outerplanar graphs has a near-quadratic number of edges, namely $\Omega _h(n^{2-1/h})$ , for every positive integer $h$ ; this almost matches the trivial $O(n^2)$ upper bound given by the $n$ -vertex complete convex geometric graph. Finally, we prove that there exists an $n$ -vertex convex geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$ -vertex caterpillars.
通用几何图
摘要将泛图的概念推广到一个几何集合。如果一个几何图形包含$\mathcal H$中每个图形的嵌入(即无交叉绘制),则该几何图形对于一类平面图形$\mathcal H$是通用的。我们的主要结果是存在一个具有$n$顶点和$O\!\left(n \log n\right)$边的几何图,该几何图对于$n$顶点森林是通用的;这推广了Chung和Graham的一个著名的结果,即存在一个(抽象)图,有$n$个顶点和$O\!\left(n \log n\right)$条边,其中包含每个$n$顶点森林作为子图。即使允许超过$n$个顶点,也不能改进$O\!\left(n \log n\right)$条边的上界。我们还证明了对于$n$顶点外平面图通称的每一个$n$顶点凸几何图对于每一个正整数$h$都有一个近二次边数,即$\Omega _h(n^{2-1/h})$;这几乎与$n$顶点完全凸几何图给出的平凡$O(n^2)$上界相匹配。最后,我们证明了存在一个顶点为$n$,边为$O\!\left(n \log n\right)$的$n$顶点凸几何图,它对于$n$顶点毛虫是通用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信