Approximation of Lipschitz Functions Using Deep Spline Neural Networks

IF 1.9 Q1 MATHEMATICS, APPLIED
Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, Michael Unser
{"title":"Approximation of Lipschitz Functions Using Deep Spline Neural Networks","authors":"Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, Michael Unser","doi":"10.1137/22m1504573","DOIUrl":null,"url":null,"abstract":"Although Lipschitz-constrained neural networks have many applications in machine learning, the design and training of expressive Lipschitz-constrained networks is very challenging. Since the popular rectified linear-unit networks have provable disadvantages in this setting, we propose using learnable spline activation functions with at least three linear regions instead. We prove that our choice is universal among all componentwise 1-Lipschitz activation functions in the sense that no other weight-constrained architecture can approximate a larger class of functions. Additionally, our choice is at least as expressive as the recently introduced non-componentwise Groupsort activation function for spectral-norm-constrained weights. The theoretical findings of this paper are consistent with previously published numerical results.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"7 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1504573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Although Lipschitz-constrained neural networks have many applications in machine learning, the design and training of expressive Lipschitz-constrained networks is very challenging. Since the popular rectified linear-unit networks have provable disadvantages in this setting, we propose using learnable spline activation functions with at least three linear regions instead. We prove that our choice is universal among all componentwise 1-Lipschitz activation functions in the sense that no other weight-constrained architecture can approximate a larger class of functions. Additionally, our choice is at least as expressive as the recently introduced non-componentwise Groupsort activation function for spectral-norm-constrained weights. The theoretical findings of this paper are consistent with previously published numerical results.
利用深度样条神经网络逼近Lipschitz函数
尽管lipschitz约束神经网络在机器学习中有很多应用,但表达性lipschitz约束网络的设计和训练是非常具有挑战性的。由于流行的整流线性单元网络在这种情况下具有可证明的缺点,我们建议使用具有至少三个线性区域的可学习样条激活函数来代替。我们证明了我们的选择在所有组件1-Lipschitz激活函数中是通用的,因为没有其他权重约束的架构可以近似更大的函数类。此外,我们的选择至少与最近引入的用于频谱范数约束权重的非组件分组排序激活函数一样具有表现力。本文的理论结果与先前发表的数值结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信