The Orbits of Folded Crossed Cubes

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jia-Jie Liu
{"title":"The Orbits of Folded Crossed Cubes","authors":"Jia-Jie Liu","doi":"10.1093/comjnl/bxad096","DOIUrl":null,"url":null,"abstract":"Abstract Two vertices $u$ and $v$ in a graph $G=(V,E)$ are in the same orbit if there exists an automorphism $\\phi $ of $G$ such that $\\phi (u)=v$. The orbit number of a graph $G$, denoted by $Orb(G)$, is the smallest number of orbits, which form a partition of $V(G)$, in $G$. All vertex-transitive graphs $G$ are with $Orb(G)=1$. Since the $n$-dimensional hypercube, denoted by $Q_{n}$, is vertex-transitive, it follows that $Orb(Q_{n})=1$ for $n\\geq 1$. Pai, Chang, and Yang proved that the $n$-dimensional folded crossed cube, denoted by $FCQ_{n}$, is vertex-transitive if and only if $n\\in \\{1,2,4\\}$, namely $Orb(FCQ_{1})=Orb(FCQ_{2})=Orb(FCQ_{4})=1$. In this paper, we prove that $Orb(FCQ_{n})=2^{\\lceil \\frac{n}{2}\\rceil -2}$ if $n\\geq 6$ is even and $Orb(FCQ_{n}) = 2^{\\lceil \\frac{n}{2}\\rceil -1}$ if $n\\geq 3$ is odd.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"55 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxad096","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Two vertices $u$ and $v$ in a graph $G=(V,E)$ are in the same orbit if there exists an automorphism $\phi $ of $G$ such that $\phi (u)=v$. The orbit number of a graph $G$, denoted by $Orb(G)$, is the smallest number of orbits, which form a partition of $V(G)$, in $G$. All vertex-transitive graphs $G$ are with $Orb(G)=1$. Since the $n$-dimensional hypercube, denoted by $Q_{n}$, is vertex-transitive, it follows that $Orb(Q_{n})=1$ for $n\geq 1$. Pai, Chang, and Yang proved that the $n$-dimensional folded crossed cube, denoted by $FCQ_{n}$, is vertex-transitive if and only if $n\in \{1,2,4\}$, namely $Orb(FCQ_{1})=Orb(FCQ_{2})=Orb(FCQ_{4})=1$. In this paper, we prove that $Orb(FCQ_{n})=2^{\lceil \frac{n}{2}\rceil -2}$ if $n\geq 6$ is even and $Orb(FCQ_{n}) = 2^{\lceil \frac{n}{2}\rceil -1}$ if $n\geq 3$ is odd.
折叠交叉立方体的轨道
摘要图$G=(V,E)$中的两个顶点$u$和$v$在同一轨道上,如果$G$存在自同构$\phi $,使得$\phi (u)=v$。图$G$的轨道数,用$Orb(G)$表示,是在$G$中形成$V(G)$分区的最小轨道数。所有顶点传递图$G$都使用$Orb(G)=1$。由于$n$维超立方体(用$Q_{n}$表示)是顶点可传递的,因此$Orb(Q_{n})=1$表示$n\geq 1$。Pai、Chang和Yang证明了$n$维折叠交叉立方体(表示为$FCQ_{n}$)顶点可传递当且仅当$n\in \{1,2,4\}$即$Orb(FCQ_{1})=Orb(FCQ_{2})=Orb(FCQ_{4})=1$。本文证明了$Orb(FCQ_{n})=2^{\lceil \frac{n}{2}\rceil -2}$如果$n\geq 6$是偶数,$Orb(FCQ_{n}) = 2^{\lceil \frac{n}{2}\rceil -1}$如果$n\geq 3$是奇数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信