A shape parameter insensitive CRBFs‐collocation for solving nonlinear optimal control problems

Ahmed E. Seleit, Tarek A. Elgohary
{"title":"A shape parameter insensitive CRBFs‐collocation for solving nonlinear optimal control problems","authors":"Ahmed E. Seleit, Tarek A. Elgohary","doi":"10.1002/oca.3063","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we introduce a Coupled Radial Basis Functions collocation ( CRBFs‐Coll ) approach for solving optimal control problems. CRBFs are real‐valued Radial Basis Functions (RBFs) augmented with a conical spline. They show insensitivity to the shape parameter resulting in robust behavior in function approximation. The method is applied to classical nonlinear optimal control problems: Zermelo's problem, a Duffing oscillator with various boundary conditions, and a nonlinear pendulum on a cart problem. The nonlinear optimal control problem is solved by deriving the necessary conditions for optimality followed by collocation using CRBFs as basis functions for approximating the two‐point boundary value problem (TPBVP). The resulting system of nonlinear algebraic equations (NAEs) is then solved using a standard solver. Unlike existing methods that rely on nodal distributions that are denser at the boundaries to obtain a solution, the present CRBFs‐Coll approach is capable of solving the optimal control problem on uniform nodes without the need for interpolation. The present CRBFs‐Coll approach is shown to be simple to implement and provides accurate results over an equidistant nodal distribution while maintaining a continuous representation of the control and states.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, we introduce a Coupled Radial Basis Functions collocation ( CRBFs‐Coll ) approach for solving optimal control problems. CRBFs are real‐valued Radial Basis Functions (RBFs) augmented with a conical spline. They show insensitivity to the shape parameter resulting in robust behavior in function approximation. The method is applied to classical nonlinear optimal control problems: Zermelo's problem, a Duffing oscillator with various boundary conditions, and a nonlinear pendulum on a cart problem. The nonlinear optimal control problem is solved by deriving the necessary conditions for optimality followed by collocation using CRBFs as basis functions for approximating the two‐point boundary value problem (TPBVP). The resulting system of nonlinear algebraic equations (NAEs) is then solved using a standard solver. Unlike existing methods that rely on nodal distributions that are denser at the boundaries to obtain a solution, the present CRBFs‐Coll approach is capable of solving the optimal control problem on uniform nodes without the need for interpolation. The present CRBFs‐Coll approach is shown to be simple to implement and provides accurate results over an equidistant nodal distribution while maintaining a continuous representation of the control and states.

Abstract Image

求解非线性最优控制问题的形状参数不敏感crbf -配置
摘要本文提出了一种求解最优控制问题的耦合径向基函数配置(crbf - Coll)方法。crbf是用圆锥样条增广的实值径向基函数(rbf)。它们对形状参数不敏感,在函数逼近中具有鲁棒性。将该方法应用于经典的非线性最优控制问题:Zermelo问题、具有多种边界条件的Duffing振荡器问题和非线性摆车问题。首先推导出最优性的必要条件,然后用crbf作为近似两点边值问题(TPBVP)的基函数进行配置,从而求解非线性最优控制问题。然后使用标准求解器求解所得到的非线性代数方程组。与现有的依赖于边界更密集的节点分布来获得解的方法不同,目前的crbf - Coll方法能够在不需要插值的情况下解决均匀节点上的最优控制问题。目前的crbf - Coll方法易于实现,并在等距节点分布上提供准确的结果,同时保持控制和状态的连续表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信