{"title":"Energy forecasting with robust, flexible, and explainable machine learning algorithms","authors":"Zhaoyang Zhu, Weiqi Chen, Rui Xia, Tian Zhou, Peisong Niu, Bingqing Peng, Wenwei Wang, Hengbo Liu, Ziqing Ma, Xinyue Gu, Jin Wang, Qiming Chen, Linxiao Yang, Qingsong Wen, Liang Sun","doi":"10.1002/aaai.12130","DOIUrl":null,"url":null,"abstract":"<p>Energy forecasting is crucial in scheduling and planning future electric load, so as to improve the reliability and safeness of the power grid. Despite recent developments of forecasting algorithms in the machine learning community, there is a lack of general and advanced algorithms specifically considering requirements from the power industry perspective. In this paper, we present eForecaster, a unified AI platform including robust, flexible, and explainable machine learning algorithms for diversified energy forecasting applications. Since October 2021, multiple commercial bus load, system load, and renewable energy forecasting systems built upon eForecaster have been deployed in seven provinces of China. The deployed systems consistently reduce the average Mean Absolute Error (MAE) by 39.8% to 77.0%, with reduced manual work and explainable guidance. In particular, eForecaster also integrates multiple interpretation methods to uncover the working mechanism of the predictive models, which significantly improves forecasts adoption and user satisfaction.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 4","pages":"377-393"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12130","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12130","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Energy forecasting is crucial in scheduling and planning future electric load, so as to improve the reliability and safeness of the power grid. Despite recent developments of forecasting algorithms in the machine learning community, there is a lack of general and advanced algorithms specifically considering requirements from the power industry perspective. In this paper, we present eForecaster, a unified AI platform including robust, flexible, and explainable machine learning algorithms for diversified energy forecasting applications. Since October 2021, multiple commercial bus load, system load, and renewable energy forecasting systems built upon eForecaster have been deployed in seven provinces of China. The deployed systems consistently reduce the average Mean Absolute Error (MAE) by 39.8% to 77.0%, with reduced manual work and explainable guidance. In particular, eForecaster also integrates multiple interpretation methods to uncover the working mechanism of the predictive models, which significantly improves forecasts adoption and user satisfaction.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.