{"title":"A unifying switching regime regression framework with applications in health economics","authors":"Giampiero Marra, Rosalba Radice, David Zimmer","doi":"10.1080/07474938.2023.2255438","DOIUrl":null,"url":null,"abstract":"Motivated by three health economics-related case studies, we propose a unifying and flexible regression modeling framework that involves regime switching. The proposal can handle the peculiar distributional shapes of the considered outcomes via a vast range of marginal distributions, allows for a wide variety of copula dependence structures and permits to specify all model parameters (including the dependence parameters) as flexible functions of covariate effects. The algorithm is based on a computationally efficient and stable penalized maximum likelihood estimation approach. The proposed modeling framework is employed in three applications in health economics, that use data from the Medical Expenditure Panel Survey, where novel patterns are uncovered. The framework has been incorporated in the R package GJRM, hence allowing users to fit the desired model(s) and produce easy-to-interpret numerical and visual summaries.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"199 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2255438","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by three health economics-related case studies, we propose a unifying and flexible regression modeling framework that involves regime switching. The proposal can handle the peculiar distributional shapes of the considered outcomes via a vast range of marginal distributions, allows for a wide variety of copula dependence structures and permits to specify all model parameters (including the dependence parameters) as flexible functions of covariate effects. The algorithm is based on a computationally efficient and stable penalized maximum likelihood estimation approach. The proposed modeling framework is employed in three applications in health economics, that use data from the Medical Expenditure Panel Survey, where novel patterns are uncovered. The framework has been incorporated in the R package GJRM, hence allowing users to fit the desired model(s) and produce easy-to-interpret numerical and visual summaries.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.