Lernaufgaben mit automatisiertem Feedback in einem digitalen Hochschultutorium zur Vorlesung der Allgemeinen Chemie als Angebot zur Binnendifferenzierung

Florian Trauten, Carolin Eitemuelle, Maik Walpuski
{"title":"Lernaufgaben mit automatisiertem Feedback in einem digitalen Hochschultutorium zur Vorlesung der Allgemeinen Chemie als Angebot zur Binnendifferenzierung","authors":"Florian Trauten, Carolin Eitemuelle, Maik Walpuski","doi":"10.3224/zehf.v7i1.03","DOIUrl":null,"url":null,"abstract":"Die hohen Abbruchquoten in naturwissenschaftlichen Studiengängen im Allgemeinen und speziell in der Chemie wurden zum Anlass genommen, ein digitales, binnendifferenzierendes Förderangebot für Chemiestudierende im ersten Semester zur Erhöhung des Studienerfolgs zu entwickeln. Da die Überwindung von Vorwissensdefiziten entscheidend für den Verbleib im Studium ist (Heublein et al., 2017), wurden Online-Lernaufgaben entwickelt, die basierend auf der individuellen Performance in einem multiple-try Feedback Algorithmus automatisiert adaptives Feedback bereitstellen. In einem Prä-post-Vergleichsgruppendesign wurde zudem die Rolle des Vorwissens auf die Wirksamkeit der zwei adaptiven Feedback-Algorithmen (elaboriert vs. korrektiv) untersucht, da die aktuelle Befundlage diesbezüglich keine eindeutigen Schlüsse zulässt. Für Studierende, die zuvor keinen Chemie Leistungskurs belegt haben, konnte dabei ein signifikanter positiver Effekt für adaptives elaboriertes Feedback gefunden werden.","PeriodicalId":493913,"journal":{"name":"Zeitschrift für empirische Hochschulforschung","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für empirische Hochschulforschung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3224/zehf.v7i1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Die hohen Abbruchquoten in naturwissenschaftlichen Studiengängen im Allgemeinen und speziell in der Chemie wurden zum Anlass genommen, ein digitales, binnendifferenzierendes Förderangebot für Chemiestudierende im ersten Semester zur Erhöhung des Studienerfolgs zu entwickeln. Da die Überwindung von Vorwissensdefiziten entscheidend für den Verbleib im Studium ist (Heublein et al., 2017), wurden Online-Lernaufgaben entwickelt, die basierend auf der individuellen Performance in einem multiple-try Feedback Algorithmus automatisiert adaptives Feedback bereitstellen. In einem Prä-post-Vergleichsgruppendesign wurde zudem die Rolle des Vorwissens auf die Wirksamkeit der zwei adaptiven Feedback-Algorithmen (elaboriert vs. korrektiv) untersucht, da die aktuelle Befundlage diesbezüglich keine eindeutigen Schlüsse zulässt. Für Studierende, die zuvor keinen Chemie Leistungskurs belegt haben, konnte dabei ein signifikanter positiver Effekt für adaptives elaboriertes Feedback gefunden werden.
在一个数字大学授课课堂以自动反馈针对学生具体的职业分类
大学这门科学课程总体上包括化学领域的高果然率,已经被利用在一年级的机会开发一种数码版的境内变性的支持,以提高学生的学习成功。克服预知之外的技能对继续学习至关重要(2017年,heublin等),因此在线学习作业被开发出来,在多疗程中自动提供适应性反馈。在一次时代前集思广益设计中,我们还探讨了以往知识对于两种适应性算法(elaboriert vs面对面)有效性的作用。对于此前从未上过化学课的学生来说,这发现了一个非常显著的适应自旋反馈效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信