{"title":"Parabolic BGG categories and their block decomposition for Lie superalgebras of Cartan type","authors":"Fei-Fei DUAN, Bin SHU, Yu-Feng YAO","doi":"10.2969/jmsj/90439043","DOIUrl":null,"url":null,"abstract":"In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\\mathfrak{g}$ naturally arises, with the zero component $\\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\\mathfrak{g}_{0}$: the “maximal one” $\\mathsf{P}_{\\max}$ and the “minimal one” $\\mathsf{P}_{\\min}$. Furthermore, the parabolic BGG category arising from $\\mathsf{P}_{\\max}$ essentially turns out to be a subcategory of the one arising from $\\mathsf{P}_{\\min}$. Such a priority of $\\mathsf{P}_{\\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\\mathcal{O}^{\\min}$ associated with $\\mathsf{P}_{\\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\\mathcal{O}^{\\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\\mathcal{O}^{\\min}$, and compute their character formulas.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/90439043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\mathfrak{g}$ naturally arises, with the zero component $\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\mathfrak{g}_{0}$: the “maximal one” $\mathsf{P}_{\max}$ and the “minimal one” $\mathsf{P}_{\min}$. Furthermore, the parabolic BGG category arising from $\mathsf{P}_{\max}$ essentially turns out to be a subcategory of the one arising from $\mathsf{P}_{\min}$. Such a priority of $\mathsf{P}_{\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\mathcal{O}^{\min}$ associated with $\mathsf{P}_{\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\mathcal{O}^{\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\mathcal{O}^{\min}$, and compute their character formulas.