Parabolic BGG categories and their block decomposition for Lie superalgebras of Cartan type

Pub Date : 2023-10-11 DOI:10.2969/jmsj/90439043
Fei-Fei DUAN, Bin SHU, Yu-Feng YAO
{"title":"Parabolic BGG categories and their block decomposition for Lie superalgebras of Cartan type","authors":"Fei-Fei DUAN, Bin SHU, Yu-Feng YAO","doi":"10.2969/jmsj/90439043","DOIUrl":null,"url":null,"abstract":"In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\\mathfrak{g}$ naturally arises, with the zero component $\\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\\mathfrak{g}_{0}$: the “maximal one” $\\mathsf{P}_{\\max}$ and the “minimal one” $\\mathsf{P}_{\\min}$. Furthermore, the parabolic BGG category arising from $\\mathsf{P}_{\\max}$ essentially turns out to be a subcategory of the one arising from $\\mathsf{P}_{\\min}$. Such a priority of $\\mathsf{P}_{\\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\\mathcal{O}^{\\min}$ associated with $\\mathsf{P}_{\\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\\mathcal{O}^{\\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\\mathcal{O}^{\\min}$, and compute their character formulas.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/90439043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the parabolic BGG categories for graded Lie superalgebras of Cartan type over the field of complex numbers. The gradation of such a Lie superalgebra $\mathfrak{g}$ naturally arises, with the zero component $\mathfrak{g}_{0}$ being a reductive Lie algebra. We first show that there are only two proper parabolic subalgebras containing Levi subalgebra $\mathfrak{g}_{0}$: the “maximal one” $\mathsf{P}_{\max}$ and the “minimal one” $\mathsf{P}_{\min}$. Furthermore, the parabolic BGG category arising from $\mathsf{P}_{\max}$ essentially turns out to be a subcategory of the one arising from $\mathsf{P}_{\min}$. Such a priority of $\mathsf{P}_{\min}$ in the sense of representation theory reduces the question to the study of the “minimal parabolic” BGG category $\mathcal{O}^{\min}$ associated with $\mathsf{P}_{\min}$. We prove the existence of projective covers of simple objects in these categories, which enables us to establish a satisfactory block theory. Most notably, our main results are as follows. (1) We classify and obtain a precise description of the blocks of $\mathcal{O}^{\min}$. (2) We investigate indecomposable tilting and indecomposable projective modules in $\mathcal{O}^{\min}$, and compute their character formulas.
分享
查看原文
Cartan型Lie超代数的抛物型BGG范畴及其块分解
本文研究了复数域上Cartan型分级李超代数的抛物型BGG范畴。这样的李超代数$\mathfrak{g}$的渐变自然产生,零分量$\mathfrak{g}_{0}$是一个约化李代数。我们首先证明了只有两个包含Levi子代数$\mathfrak{g}_{0}$的固有抛物子代数:“极大子代数”$\mathsf{P}_{\max}$和“极小子代数”$\mathsf{P}_{\min}$。此外,由$\mathsf{P}_{\max}$产生的抛物型BGG类别实际上是由$\mathsf{P}_{\min}$产生的类别的子类别。这种$\mathsf{P}_{\min}$在表征理论意义上的优先级将问题简化为与$\mathsf{P}_{\min}$相关的“最小抛物线”BGG类别$\mathcal{O}^{\min}$的研究。我们证明了这些范畴中简单对象的射影覆盖的存在性,从而建立了一个令人满意的块论。最值得注意的是,我们的主要结果如下。(1)我们对$\mathcal{O}^{\min}$的块进行了分类并得到了精确的描述。(2)研究了$\mathcal{O}^{\min}$中不可分解的倾斜模和不可分解的投影模,并计算了它们的特征公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信