Comparison of Supervised Learning Algorithms on a 5G Dataset Reduced via Principal Component Analysis (PCA)

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Future Internet Pub Date : 2023-10-11 DOI:10.3390/fi15100335
Joan D. Gonzalez-Franco, Jorge E. Preciado-Velasco, Jose E. Lozano-Rizk, Raul Rivera-Rodriguez, Jorge Torres-Rodriguez, Miguel A. Alonso-Arevalo
{"title":"Comparison of Supervised Learning Algorithms on a 5G Dataset Reduced via Principal Component Analysis (PCA)","authors":"Joan D. Gonzalez-Franco, Jorge E. Preciado-Velasco, Jose E. Lozano-Rizk, Raul Rivera-Rodriguez, Jorge Torres-Rodriguez, Miguel A. Alonso-Arevalo","doi":"10.3390/fi15100335","DOIUrl":null,"url":null,"abstract":"Improving the quality of service (QoS) and meeting service level agreements (SLAs) are critical objectives in next-generation networks. This article presents a study on applying supervised learning (SL) algorithms in a 5G/B5G service dataset after being subjected to a principal component analysis (PCA). The study objective is to evaluate if the reduction of the dimensionality of the dataset via PCA affects the predictive capacity of the SL algorithms. A machine learning (ML) scheme proposed in a previous article used the same algorithms and parameters, which allows for a fair comparison with the results obtained in this work. We searched the best hyperparameters for each SL algorithm, and the simulation results indicate that the support vector machine (SVM) algorithm obtained a precision of 98% and a F1 score of 98.1%. We concluded that the findings of this study hold significance for research in the field of next-generation networks, which involve a wide range of input parameters and can benefit from the application of principal component analysis (PCA) on the performance of QoS and maintaining the SLA.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"39 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the quality of service (QoS) and meeting service level agreements (SLAs) are critical objectives in next-generation networks. This article presents a study on applying supervised learning (SL) algorithms in a 5G/B5G service dataset after being subjected to a principal component analysis (PCA). The study objective is to evaluate if the reduction of the dimensionality of the dataset via PCA affects the predictive capacity of the SL algorithms. A machine learning (ML) scheme proposed in a previous article used the same algorithms and parameters, which allows for a fair comparison with the results obtained in this work. We searched the best hyperparameters for each SL algorithm, and the simulation results indicate that the support vector machine (SVM) algorithm obtained a precision of 98% and a F1 score of 98.1%. We concluded that the findings of this study hold significance for research in the field of next-generation networks, which involve a wide range of input parameters and can benefit from the application of principal component analysis (PCA) on the performance of QoS and maintaining the SLA.
基于主成分分析(PCA)的5G数据集监督学习算法比较
提高服务质量(QoS)和满足服务水平协议(sla)是下一代网络的关键目标。本文研究了在主成分分析(PCA)之后在5G/B5G服务数据集中应用监督学习(SL)算法的方法。本研究的目的是评估通过PCA对数据集进行降维是否会影响SL算法的预测能力。在前一篇文章中提出的机器学习(ML)方案使用了相同的算法和参数,这允许与本工作中获得的结果进行公平比较。我们为每个SL算法搜索了最佳超参数,仿真结果表明,支持向量机(SVM)算法获得了98%的精度和98.1%的F1分数。我们的结论是,本研究的发现对下一代网络领域的研究具有重要意义,下一代网络涉及广泛的输入参数,并且可以受益于主成分分析(PCA)在QoS性能和SLA维护方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信