{"title":"Thermal Analysis of a Plate Heat Exchanger (PHE) Fitted with Carding Tool Patterns using CFD Modeling","authors":"Hassene Djemel, Chtourou Sirine, Mohamed Kaffel, Mounir Baccar","doi":"10.1615/heattransres.2023048050","DOIUrl":null,"url":null,"abstract":"Inspired by the wool carding tools, a new plate heat exchanger (PHE) design was developed, tested and analyzed numerically. The present research work used CFD simulations to examine the impact of various parameters, such as the rib type (continuous, discreet), the arrangement type (rectangular, square and triangular) and the geometrical parameters (transversal and longitudinal pitch) on the PHE hydraulic and thermal performances. A three-dimensional 3D evaluation of turbulent flow over a plate fitted with carding tool patterns was conducted using the k-ɛ turbulence model and with a Reynolds number range of 400 to 1800. The numerical results were compared to previous experimental research to validate the dependability of the technique, and a mesh independence analysis was performed to confirm the precision and the accuracy of the CFD method. The results show that CFD software Ansys can effectively predict the pressure drop across the carding tools and provide valuable insights into the fluid flow behavior within the system in terms of calculating the thermal hydraulic performance parameter THPP and the thermal effectiveness ɛ. The ultimate goal of this research work was to identify the ideal arrangement with the highest heat transfer rate and the lowest pressure losses in terms of determining the best THPP. Compared to the conventional PHE chevron type, the thermal performance of the novel PHE design was enhanced by 25.63 % and 54% in terms of non-dimensional parameters ɛ and THPP, respectively.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/heattransres.2023048050","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the wool carding tools, a new plate heat exchanger (PHE) design was developed, tested and analyzed numerically. The present research work used CFD simulations to examine the impact of various parameters, such as the rib type (continuous, discreet), the arrangement type (rectangular, square and triangular) and the geometrical parameters (transversal and longitudinal pitch) on the PHE hydraulic and thermal performances. A three-dimensional 3D evaluation of turbulent flow over a plate fitted with carding tool patterns was conducted using the k-ɛ turbulence model and with a Reynolds number range of 400 to 1800. The numerical results were compared to previous experimental research to validate the dependability of the technique, and a mesh independence analysis was performed to confirm the precision and the accuracy of the CFD method. The results show that CFD software Ansys can effectively predict the pressure drop across the carding tools and provide valuable insights into the fluid flow behavior within the system in terms of calculating the thermal hydraulic performance parameter THPP and the thermal effectiveness ɛ. The ultimate goal of this research work was to identify the ideal arrangement with the highest heat transfer rate and the lowest pressure losses in terms of determining the best THPP. Compared to the conventional PHE chevron type, the thermal performance of the novel PHE design was enhanced by 25.63 % and 54% in terms of non-dimensional parameters ɛ and THPP, respectively.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.