Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches

IF 1.7 3区 农林科学 Q2 FORESTRY
Silva Fennica Pub Date : 2023-01-01 DOI:10.14214/sf.23023
Lennart Noordermeer, Hans Ole Ørka, Terje Gobakken
{"title":"Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches","authors":"Lennart Noordermeer, Hans Ole Ørka, Terje Gobakken","doi":"10.14214/sf.23023","DOIUrl":null,"url":null,"abstract":"Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold’s error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.","PeriodicalId":49520,"journal":{"name":"Silva Fennica","volume":"106 1 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silva Fennica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14214/sf.23023","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold’s error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.
利用收割机和机载激光扫描器数据输入干频率分布:库存方法的比较
茎的频率分布为收获前规划提供了有用的信息。我们使用收割机数据作为参考数据和机载激光扫描仪(ALS)数据计算的预测变量,比较了四种用于输入茎频率分布的库存方法。我们使用k-最近邻技术估算了树干直径、树高、体积和锯材体积的分布和林分平均值。我们比较了:(1)单株树冠(ITC)、半树冠(semi-ITC)、区域树冠(ABA)和增强型树冠(EABA)。采用一种雷诺误差指数(Reynold’s error index)对估算分布的精度进行了评估,得到茎粗、树高、体积和锯材体积分布的最佳平均精度分别为0.13、0.13、0.10和0.10。使用半ITC、ABA和EABA方法获得的准确性显著优于使用ITC方法获得的准确性。森林属性、清查方式、林分大小和激光脉冲密度对频率分布精度有显著影响,而ALS延迟和落叶树百分比对频率分布精度影响不显著。本研究强调了收割机和ALS数据在收获前库存中输入茎频率分布的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Silva Fennica
Silva Fennica 农林科学-林学
CiteScore
3.50
自引率
11.10%
发文量
21
审稿时长
3 months
期刊介绍: Silva Fennica publishes significant new knowledge on forest sciences. The scope covers research on forestry and forest ecosystems. Silva Fennica aims to increase understanding on forest ecosystems, and sustainable use and conservation of forest resources. Use of forest resources includes all aspects of forestry containing biomass-based and non-timber products, economic and social factors etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信