{"title":"Effect of properties of NC-TiO2 grains on the performance of organic/inorganic solar cells","authors":"H. Al-Dmour, D.M. Taylor","doi":"10.15251/jor.2023.195.587","DOIUrl":null,"url":null,"abstract":"This work studies the influence of the properties of nanocrystalline -titanium dioxide (ncTiO2) films on the performance of solar cells based on the Organic materials/ncTiO2 multilayer structure. That was investigated using X-ray diffraction, Atomic force microscopy (AFM), and Source-Measure Unit(SMU) under different ambient conditions. The device produced from batch A exhibit better performance compared to the device produced from batch B. The short circuit current, Jsc, increases from 0.03 mA/cm2 to 0.22 mA/cm2 , and the power conversion efficiency, η, from 0.01% to 0.09% in comparison between batches A and B solar cells. That is attributed to the grains of batch A nc-TiO2 having a size of 25 nm and a height of 100 nm, while particles of batch B nc-TiO2 film have a height of 40 nm and a size of 19 nm. These features cause to increase in the resistance and defects throughout the bulk region and interfaces of Batch B solar cells and impact the mechanism processes of charge generation of solar cells.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.195.587","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work studies the influence of the properties of nanocrystalline -titanium dioxide (ncTiO2) films on the performance of solar cells based on the Organic materials/ncTiO2 multilayer structure. That was investigated using X-ray diffraction, Atomic force microscopy (AFM), and Source-Measure Unit(SMU) under different ambient conditions. The device produced from batch A exhibit better performance compared to the device produced from batch B. The short circuit current, Jsc, increases from 0.03 mA/cm2 to 0.22 mA/cm2 , and the power conversion efficiency, η, from 0.01% to 0.09% in comparison between batches A and B solar cells. That is attributed to the grains of batch A nc-TiO2 having a size of 25 nm and a height of 100 nm, while particles of batch B nc-TiO2 film have a height of 40 nm and a size of 19 nm. These features cause to increase in the resistance and defects throughout the bulk region and interfaces of Batch B solar cells and impact the mechanism processes of charge generation of solar cells.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.