Isometric group actions with vanishing rate of escape on $$\textrm{CAT}(0)$$ spaces

IF 2.4 1区 数学 Q1 MATHEMATICS
Hiroyasu Izeki
{"title":"Isometric group actions with vanishing rate of escape on $$\\textrm{CAT}(0)$$ spaces","authors":"Hiroyasu Izeki","doi":"10.1007/s00039-023-00628-9","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a finitely generated group equipped with a symmetric and nondegenerate probability measure $\\mu$ with finite second moment, and $Y$ a CAT(0) space which is either proper or of finite telescopic dimension. We show that if an isometric action of $\\Gamma$ on $Y$ has vanishing rate of escape with respect to $\\mu$ and does not fix a point in the boundary at infinity of $Y$, then there exists a flat subspace in $Y$ which is left invariant under the action of $\\Gamma$. In the proof of this result, an equivariant $\\mu$-harmonic map from $\\Gamma$ into $Y$ plays an important role.","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"56 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00039-023-00628-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\Gamma$ be a finitely generated group equipped with a symmetric and nondegenerate probability measure $\mu$ with finite second moment, and $Y$ a CAT(0) space which is either proper or of finite telescopic dimension. We show that if an isometric action of $\Gamma$ on $Y$ has vanishing rate of escape with respect to $\mu$ and does not fix a point in the boundary at infinity of $Y$, then there exists a flat subspace in $Y$ which is left invariant under the action of $\Gamma$. In the proof of this result, an equivariant $\mu$-harmonic map from $\Gamma$ into $Y$ plays an important role.
$$\textrm{CAT}(0)$$空间上具有逃逸消失率的等长群作用
设$\Gamma$是一个有限生成的群,具有有限第二矩的对称非退化概率测度$\mu$, $Y$是一个固有维数或有限伸缩维数的CAT(0)空间。我们证明了如果$\Gamma$在$Y$上的等距作用相对于$\mu$具有逃逸消失率,并且在$Y$的无穷远处边界上不固定一个点,则在$Y$上存在一个平坦子空间,该子空间在$\Gamma$作用下保持不变。在证明这一结果的过程中,一个从$\Gamma$到$Y$的等变$\mu$ -调和映射起了重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信