Deep learning-based quantification of traction bronchiectasis severity for predicting outcome in idiopathic pulmonary fibrosis

IF 0.7 Q3 MEDICINE, GENERAL & INTERNAL
Federico Felder, Yang Nan, Guang Yang, John Mackintosh, Lucio Calandriello, Mario Silva, Ian Glaspole, Nicole Goh, Wendy Cooper, Christopher Grainge, Peter Hopkins, Yuben Moodley, Navaratnam Vidya, Paul Reynolds, Athol Wells, Tamera Corte, Simon Walsh
{"title":"Deep learning-based quantification of traction bronchiectasis severity for predicting outcome in idiopathic pulmonary fibrosis","authors":"Federico Felder, Yang Nan, Guang Yang, John Mackintosh, Lucio Calandriello, Mario Silva, Ian Glaspole, Nicole Goh, Wendy Cooper, Christopher Grainge, Peter Hopkins, Yuben Moodley, Navaratnam Vidya, Paul Reynolds, Athol Wells, Tamera Corte, Simon Walsh","doi":"10.1183/13993003.congress-2023.oa4853","DOIUrl":null,"url":null,"abstract":"<b>Aim:</b> We investigated&nbsp;the prognostic utility a novel deep learning algorithm for quantifying severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF) enrolled in the Australian IPF Registry (AIPFR). <b>Methods:</b> Visual evaluation of HRCTs from the AIPFR was performed by 2 expert thoracic radiologists evaluated. Total airway volume (TAV) was quantified using a novel 3D U-Net-based deep learning algorithm. SOFIA UIP probability scores were obtained using a previously reported deep learning algorithm, trained in the identification of UIP features. <b>Results:</b> Total airway volume was an independent predictor of mortality when controlling for visual-based evaluation of total fibrosis extent (HR 1.96, p<0.0001), %Predicted FVC (HR 2.15, p<0.0001) or the CPI (n=217, HR 1.52, p=0.02. On bivariable analysis both TAV (HR 2.13, p<0.0001) and SOFIA-UIP probability (HR 1.30, p<0.0001) independently predicted mortality. On bivariable analysis with total fibrosis extent, TAV independently predicted mortality in&nbsp;UIP-like disease&nbsp;(HR 1.50, p=0.03) and was the only predictor of mortality (HR 5.33, p<0.0001) in those&nbsp;meeting&nbsp;indeterminate/alternative diagnosis criteria. An increase in TAV of 1% of total lung volume was associated with a 3-fold increased likelihood of developing progressive disease (OR 3.04 p=0.009) when controlling for total fibrosis extent. <b>Conclusion:</b> In IPF, automated quantification of TAV predicts mortality independently of total fibrosis extent on HRCT and can be used to identify patients at risk of progression at 12 months. In collaboration with the AIPFR and The Open Source Imaging Consortium","PeriodicalId":34850,"journal":{"name":"Imaging","volume":"35 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1183/13993003.congress-2023.oa4853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: We investigated the prognostic utility a novel deep learning algorithm for quantifying severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF) enrolled in the Australian IPF Registry (AIPFR). Methods: Visual evaluation of HRCTs from the AIPFR was performed by 2 expert thoracic radiologists evaluated. Total airway volume (TAV) was quantified using a novel 3D U-Net-based deep learning algorithm. SOFIA UIP probability scores were obtained using a previously reported deep learning algorithm, trained in the identification of UIP features. Results: Total airway volume was an independent predictor of mortality when controlling for visual-based evaluation of total fibrosis extent (HR 1.96, p<0.0001), %Predicted FVC (HR 2.15, p<0.0001) or the CPI (n=217, HR 1.52, p=0.02. On bivariable analysis both TAV (HR 2.13, p<0.0001) and SOFIA-UIP probability (HR 1.30, p<0.0001) independently predicted mortality. On bivariable analysis with total fibrosis extent, TAV independently predicted mortality in UIP-like disease (HR 1.50, p=0.03) and was the only predictor of mortality (HR 5.33, p<0.0001) in those meeting indeterminate/alternative diagnosis criteria. An increase in TAV of 1% of total lung volume was associated with a 3-fold increased likelihood of developing progressive disease (OR 3.04 p=0.009) when controlling for total fibrosis extent. Conclusion: In IPF, automated quantification of TAV predicts mortality independently of total fibrosis extent on HRCT and can be used to identify patients at risk of progression at 12 months. In collaboration with the AIPFR and The Open Source Imaging Consortium
基于深度学习的牵引支气管扩张严重程度量化预测特发性肺纤维化预后
目的:我们研究了一种新的深度学习算法,用于量化特发性肺纤维化(IPF)患者牵引性支气管扩张的严重程度,该算法在澳大利亚IPF注册(AIPFR)中注册。方法:由2名胸科专家对AIPFR的hrct进行视觉评价。气道总容积(TAV)使用一种新的基于3D u - net的深度学习算法进行量化。SOFIA UIP概率分数是使用先前报道的深度学习算法获得的,该算法在识别UIP特征方面进行了训练。结果:当控制基于视觉的总纤维化程度评估(HR 1.96, p < 0.01)、预测FVC % (HR 2.15, p < 0.01)或CPI (n=217, HR 1.52, p=0.02)时,气道总容积是死亡率的独立预测因子。在双变量分析中,TAV (HR 2.13, p<0.0001)和SOFIA-UIP概率(HR 1.30, p<0.0001)独立预测了死亡率。在总纤维化程度的双变量分析中,TAV独立预测uip样疾病的死亡率(HR 1.50, p=0.03),并且是满足不确定/可选诊断标准的患者死亡率的唯一预测因子(HR 5.33, p= 0.0001)。在控制总纤维化程度的情况下,TAV增加占肺总容积的1%与发生进展性疾病的可能性增加3倍相关(OR 3.04 p=0.009)。结论:在IPF中,TAV的自动量化预测死亡率独立于HRCT上的总纤维化程度,可用于识别12个月时有进展风险的患者。与AIPFR和开源成像联盟合作
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Imaging
Imaging MEDICINE, GENERAL & INTERNAL-
CiteScore
0.70
自引率
25.00%
发文量
6
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信