Saeed Mollaee, David M. Budgett, Andrew J. Taberner, Poul M. F. Nielsen
{"title":"Hyperelastic constitutive model parameters identification using optical-based techniques and hybrid optimisation","authors":"Saeed Mollaee, David M. Budgett, Andrew J. Taberner, Poul M. F. Nielsen","doi":"10.1007/s10999-023-09673-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose a new optical-based technique to identify the constitutive relation coefficients of the hyperelastic material using a hybrid optimisation approach. This technique can be used in place of traditional mechanical testing of elastomers for applications that involve inhomogeneous deformation. The purpose of the proposed method is to identify the incompressible hyperelastic material constitutive relation coefficients using a single experiment under different loading cases. The method comprises sample surface 3D reconstruction and uses finite element simulations to replicate the experiments, and uses a hybrid optimisation technique to minimise the error between actual 3D deformations and FE simulation results. The proposed hybrid technique predicts the hyperelastic constitutive relation coefficients more accurately than other optimisation methods. This study introduces a novel approach by employing a subpixel image registration algorithm for 3D reconstruction. The method requires a single experiment with diverse loading cases to accurately determine the coefficients of hyperelastic constitutive relations. The setup is portable and can be accommodated in a small suitcase. For this purpose, an apparatus was constructed comprising a stereoscopic system with eight cameras and a six-degree-of-freedom force-torque sensor to measure the induced forces and torques during the experiments. We identified the constitutive relation coefficients of Ogden N1, Ogden N3, Yeoh, and Arruda-Boyce relations which are commonly used models for silicone materials, using a traditional uniaxial test, optical uniaxial test (experiments performed using a constructed optical system), and inhomogeneous deformations tests. The study demonstrated that the coefficients obtained from inhomogeneous deformation tests provided the most accurate FE predictions. It was also shown that hyperelastic constitutive relation coefficients obtained from traditional uniaxial tests are insufficient to describe the material behaviour when the material undergoes inhomogeneous deformations.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 2","pages":"233 - 249"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09673-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09673-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we propose a new optical-based technique to identify the constitutive relation coefficients of the hyperelastic material using a hybrid optimisation approach. This technique can be used in place of traditional mechanical testing of elastomers for applications that involve inhomogeneous deformation. The purpose of the proposed method is to identify the incompressible hyperelastic material constitutive relation coefficients using a single experiment under different loading cases. The method comprises sample surface 3D reconstruction and uses finite element simulations to replicate the experiments, and uses a hybrid optimisation technique to minimise the error between actual 3D deformations and FE simulation results. The proposed hybrid technique predicts the hyperelastic constitutive relation coefficients more accurately than other optimisation methods. This study introduces a novel approach by employing a subpixel image registration algorithm for 3D reconstruction. The method requires a single experiment with diverse loading cases to accurately determine the coefficients of hyperelastic constitutive relations. The setup is portable and can be accommodated in a small suitcase. For this purpose, an apparatus was constructed comprising a stereoscopic system with eight cameras and a six-degree-of-freedom force-torque sensor to measure the induced forces and torques during the experiments. We identified the constitutive relation coefficients of Ogden N1, Ogden N3, Yeoh, and Arruda-Boyce relations which are commonly used models for silicone materials, using a traditional uniaxial test, optical uniaxial test (experiments performed using a constructed optical system), and inhomogeneous deformations tests. The study demonstrated that the coefficients obtained from inhomogeneous deformation tests provided the most accurate FE predictions. It was also shown that hyperelastic constitutive relation coefficients obtained from traditional uniaxial tests are insufficient to describe the material behaviour when the material undergoes inhomogeneous deformations.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.