{"title":"The research of a multi-stage roller type magnetorheological transmission device on temperature properties","authors":"Jinjie Ji, Zuzhi Tian, Xiangfan Wu, Fangwei Xie, Xiankang Huang, Yujie Tang","doi":"10.1177/1045389x231195015","DOIUrl":null,"url":null,"abstract":"Magnetorheological Transmission Device (MRTD) is a controllable power regulation device using magnetorheological fluid as the transmission medium. It has characteristics of fast response, a wide range of speed regulations, and a pollution-free environment. The traditional pairwise transmission structure has serious heat generation problems during operation, resulting in low transmission efficiency. Therefore, we innovatively propose a multi-stage roller type MRTD to improve the heat generation problem fundamentally. The steady-state and transient temperature fields of the multi-stage roller type MRTD are simulated using the thermal analysis module in ANSYS based on the temperature field formulation. The variations of internal temperature at different slip powers are obtained. The results show that the designed multi-stage roller type MRTD has a good suppression of temperature rise. This study can provide a new approach to improve the thermal performance of MRTD.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"28 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1045389x231195015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetorheological Transmission Device (MRTD) is a controllable power regulation device using magnetorheological fluid as the transmission medium. It has characteristics of fast response, a wide range of speed regulations, and a pollution-free environment. The traditional pairwise transmission structure has serious heat generation problems during operation, resulting in low transmission efficiency. Therefore, we innovatively propose a multi-stage roller type MRTD to improve the heat generation problem fundamentally. The steady-state and transient temperature fields of the multi-stage roller type MRTD are simulated using the thermal analysis module in ANSYS based on the temperature field formulation. The variations of internal temperature at different slip powers are obtained. The results show that the designed multi-stage roller type MRTD has a good suppression of temperature rise. This study can provide a new approach to improve the thermal performance of MRTD.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.