{"title":"Norm inflation for a non-linear heat equation with gaussian initial conditions","authors":"Ilya Chevyrev","doi":"10.1007/s40072-023-00317-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider a non-linear heat equation $$\\partial _t u = \\Delta u + B(u,Du)+P(u)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>B</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> posed on the d -dimensional torus, where P is a polynomial of degree at most 3 and B is a bilinear map that is not a total derivative. We show that, if the initial condition $$u_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is taken from a sequence of smooth Gaussian fields with a specified covariance, then u exhibits norm inflation with high probability. A consequence of this result is that there exists no Banach space of distributions which carries the Gaussian free field on the 3D torus and to which the DeTurck–Yang–Mills heat flow extends continuously, which complements recent well-posedness results of Cao–Chatterjee and the author with Chandra–Hairer–Shen. Another consequence is that the (deterministic) non-linear heat equation exhibits norm inflation, and is thus locally ill-posed, at every point in the Besov space $$B^{-1/2}_{\\infty ,\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> ; the space $$B^{-1/2}_{\\infty ,\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> is an endpoint since the equation is locally well-posed for $$B^{\\eta }_{\\infty ,\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> <mml:mi>η</mml:mi> </mml:msubsup> </mml:math> for every $$\\eta >-\\frac{1}{2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>></mml:mo> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:math> .","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-023-00317-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract We consider a non-linear heat equation $$\partial _t u = \Delta u + B(u,Du)+P(u)$$ ∂tu=Δu+B(u,Du)+P(u) posed on the d -dimensional torus, where P is a polynomial of degree at most 3 and B is a bilinear map that is not a total derivative. We show that, if the initial condition $$u_0$$ u0 is taken from a sequence of smooth Gaussian fields with a specified covariance, then u exhibits norm inflation with high probability. A consequence of this result is that there exists no Banach space of distributions which carries the Gaussian free field on the 3D torus and to which the DeTurck–Yang–Mills heat flow extends continuously, which complements recent well-posedness results of Cao–Chatterjee and the author with Chandra–Hairer–Shen. Another consequence is that the (deterministic) non-linear heat equation exhibits norm inflation, and is thus locally ill-posed, at every point in the Besov space $$B^{-1/2}_{\infty ,\infty }$$ B∞,∞-1/2 ; the space $$B^{-1/2}_{\infty ,\infty }$$ B∞,∞-1/2 is an endpoint since the equation is locally well-posed for $$B^{\eta }_{\infty ,\infty }$$ B∞,∞η for every $$\eta >-\frac{1}{2}$$ η>-12 .
期刊介绍:
Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.