Sobolev algebras on Lie groups and noncommutative geometry

IF 0.7 2区 数学 Q2 MATHEMATICS
Cédric Arhancet
{"title":"Sobolev algebras on Lie groups and noncommutative geometry","authors":"Cédric Arhancet","doi":"10.4171/jncg/532","DOIUrl":null,"url":null,"abstract":"We show that there exists a quantum compact metric space which underlies the setting of each Sobolev algebra associated to a subelliptic Laplacian $\\Delta=-(X\\_1^2+\\cdots+X\\_m^2)$ on a compact connected Lie group $G$ if $p$ is large enough, more precisely under the (sharp) condition $p > \\frac{d}{\\alpha}$, where $d$ is the local dimension of $(G,X)$ and where $0 < \\alpha \\leq 1$. We also provide locally compact variants of this result and generalizations for real second-order subelliptic operators. We also introduce a compact spectral triple (= noncommutative manifold) canonically associated to each subelliptic Laplacian on a compact group. In addition, we show that its spectral dimension is equal to the local dimension of $(G,X)$. Finally, we prove that the Connes spectral pseudo-metric allows us to recover the Carnot–Carathéodory distance.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"238 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/532","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We show that there exists a quantum compact metric space which underlies the setting of each Sobolev algebra associated to a subelliptic Laplacian $\Delta=-(X\_1^2+\cdots+X\_m^2)$ on a compact connected Lie group $G$ if $p$ is large enough, more precisely under the (sharp) condition $p > \frac{d}{\alpha}$, where $d$ is the local dimension of $(G,X)$ and where $0 < \alpha \leq 1$. We also provide locally compact variants of this result and generalizations for real second-order subelliptic operators. We also introduce a compact spectral triple (= noncommutative manifold) canonically associated to each subelliptic Laplacian on a compact group. In addition, we show that its spectral dimension is equal to the local dimension of $(G,X)$. Finally, we prove that the Connes spectral pseudo-metric allows us to recover the Carnot–Carathéodory distance.
李群上的Sobolev代数与非交换几何
我们证明存在一个量子紧致度量空间,它是紧致连通李群$G$上与次椭圆拉普拉斯算子$\Delta=-(X\_1^2+\cdots+X\_m^2)$相关的每个Sobolev代数的设置的基础,如果$p$足够大,更准确地说,在(sharp)条件$p > \frac{d}{\alpha}$下,$d$是$(G,X)$的局部维数,$0 < \alpha \leq 1$。我们也给出了这一结果的局部紧化变体和实二阶次椭圆算子的推广。我们还引入了紧群上每个亚椭圆拉普拉斯算子正则关联的紧谱三重(=非交换流形)。此外,我们还证明了它的光谱维数等于$(G,X)$的局部维数。最后,我们证明了cones谱伪度量允许我们恢复carnot - carathimodory距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信