Improvement of the Mathematical Model for Quality Assurance in the Determination of Kinetic Parameters of Thermal Degradation of Polypropylene Through Thermogravimetric Analysis

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Esteban Fregoso-Israel, Ángeles Olvera-Treviño, Juan Enrique Romero-Hernández, Gerardo Omar Hernández-Segura, Carlos Álvarez-Maciel
{"title":"Improvement of the Mathematical Model for Quality Assurance in the Determination of Kinetic Parameters of Thermal Degradation of Polypropylene Through Thermogravimetric Analysis","authors":"Esteban Fregoso-Israel,&nbsp;Ángeles Olvera-Treviño,&nbsp;Juan Enrique Romero-Hernández,&nbsp;Gerardo Omar Hernández-Segura,&nbsp;Carlos Álvarez-Maciel","doi":"10.1002/mats.202300038","DOIUrl":null,"url":null,"abstract":"<p>Robust mathematical treatment of the Ozawa/Flynn/Wall isoconversion method is conducted to determine the value and uncertainty of the activation energy and pre-exponential factor for the degradation of polypropylene in thermogravimetric analysis experiments at constant heating rates. The present work employs mathematical models and uncertainty propagation techniques based on the Guide to the Expression of Uncertainty in Measurement to estimate the Arrhenius activation energy and pre-exponential factor due to the uncertainty of the integration constant <i>b</i>, both in a linear and a third-degree reciprocal polynomial model with respect to <i>x</i>. The error arising from Doyle's linear approximation in the improper integral of temperature in the Arrhenius equation is examined, and an alternative method is proposed to correct this error, reducing it to 0.032% in the working interval of −200 ≤ <i>x</i> ≤ −15, where <i>x</i> = −<i>E</i>/<i>RT</i>. Given the increased sensitivity of modern thermogravimetric analysis equipment, these improvements are considered essential for obtaining reliable results that align with experimental precision limits compared to previous works. Thus, this allows for the development of an enhanced quality assurance framework by providing more robust uncertainty estimation and a better understanding of the method. Moreover, this approach can be applied to other similar polymer system.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202300038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Robust mathematical treatment of the Ozawa/Flynn/Wall isoconversion method is conducted to determine the value and uncertainty of the activation energy and pre-exponential factor for the degradation of polypropylene in thermogravimetric analysis experiments at constant heating rates. The present work employs mathematical models and uncertainty propagation techniques based on the Guide to the Expression of Uncertainty in Measurement to estimate the Arrhenius activation energy and pre-exponential factor due to the uncertainty of the integration constant b, both in a linear and a third-degree reciprocal polynomial model with respect to x. The error arising from Doyle's linear approximation in the improper integral of temperature in the Arrhenius equation is examined, and an alternative method is proposed to correct this error, reducing it to 0.032% in the working interval of −200 ≤ x ≤ −15, where x = −E/RT. Given the increased sensitivity of modern thermogravimetric analysis equipment, these improvements are considered essential for obtaining reliable results that align with experimental precision limits compared to previous works. Thus, this allows for the development of an enhanced quality assurance framework by providing more robust uncertainty estimation and a better understanding of the method. Moreover, this approach can be applied to other similar polymer system.

Abstract Image

Abstract Image

改进通过热重分析确定聚丙烯热降解动力学参数的质量保证数学模型
对 Ozawa/Flynn/Wall 等转换法进行了稳健的数学处理,以确定在恒定加热速率下的热重分析实验中聚丙烯降解的活化能和预指数的值和不确定性。本研究以《测量不确定度表达指南》为基础,采用数学模型和不确定度传播技术,在与 x 有关的线性模型和三度倒数多项式模型中,估算因积分常数 b 的不确定性而引起的阿伦尼乌斯活化能和预指数因子。研究了多伊尔线性近似在阿伦尼乌斯方程中温度的不适当积分中产生的误差,并提出了纠正这一误差的替代方法,在工作区间 -200 ≤ x ≤ -15(其中 x = -E/RT)内将误差减小到 0.032%。鉴于现代热重分析设备的灵敏度不断提高,与之前的工作相比,这些改进对于获得与实验精度限值一致的可靠结果至关重要。因此,通过提供更稳健的不确定性估计和对方法的更好理解,可以建立一个增强的质量保证框架。此外,这种方法还可应用于其他类似的聚合物系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信