{"title":"System Predictor: Grounding Size Estimator for Logic Programs under Answer Set Semantics","authors":"DANIEL BRESNAHAN, NICHOLAS HIPPEN, YULIYA LIERLER","doi":"10.1017/s1471068423000078","DOIUrl":null,"url":null,"abstract":"Abstract Answer set programming is a declarative logic programming paradigm geared towards solving difficult combinatorial search problems. While different logic programs can encode the same problem, their performance may vary significantly. It is not always easy to identify which version of the program performs the best. We present the system predictor (and its algorithmic backend) for estimating the grounding size of programs, a metric that can influence a performance of a system processing a program. We evaluate the impact of predictor when used as a guide for rewritings produced by the answer set programming rewriting tools projector and lpopt . The results demonstrate potential to this approach.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"244 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1471068423000078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Answer set programming is a declarative logic programming paradigm geared towards solving difficult combinatorial search problems. While different logic programs can encode the same problem, their performance may vary significantly. It is not always easy to identify which version of the program performs the best. We present the system predictor (and its algorithmic backend) for estimating the grounding size of programs, a metric that can influence a performance of a system processing a program. We evaluate the impact of predictor when used as a guide for rewritings produced by the answer set programming rewriting tools projector and lpopt . The results demonstrate potential to this approach.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.