{"title":"Set-valued backward stochastic differential equations","authors":"Çağın Ararat, Jin Ma, Wenqian Wu","doi":"10.1214/22-aap1896","DOIUrl":null,"url":null,"abstract":"In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of “inverse” operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we establish an analytic framework for studying set-valued backward stochastic differential equations (set-valued BSDE), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will make use of the notion of the Hukuhara difference between sets, in order to compensate the lack of “inverse” operation of the traditional Minkowski addition, whence the vector space structure in set-valued analysis. While proving the well-posedness of a class of set-valued BSDEs, we shall also address some fundamental issues regarding generalized Aumann–Itô integrals, especially when it is connected to the martingale representation theorem. In particular, we propose some necessary extensions of the integral that can be used to represent set-valued martingales with nonsingleton initial values. This extension turns out to be essential for the study of set-valued BSDEs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.