Functional central limit theorems for local statistics of spatial birth–death processes in the thermodynamic regime

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Efe Onaran, Omer Bobrowski, Robert J. Adler
{"title":"Functional central limit theorems for local statistics of spatial birth–death processes in the thermodynamic regime","authors":"Efe Onaran, Omer Bobrowski, Robert J. Adler","doi":"10.1214/22-aap1912","DOIUrl":null,"url":null,"abstract":"We present normal approximation results at the process level for local functionals defined on dynamic Poisson processes in Rd. The dynamics we study here are those of a Markov birth–death process. We prove functional limit theorems in the so-called thermodynamic regime. Our results are applicable to several functionals of interest in the stochastic geometry literature, including subgraph and component counts in the random geometric graphs.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"40 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1912","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We present normal approximation results at the process level for local functionals defined on dynamic Poisson processes in Rd. The dynamics we study here are those of a Markov birth–death process. We prove functional limit theorems in the so-called thermodynamic regime. Our results are applicable to several functionals of interest in the stochastic geometry literature, including subgraph and component counts in the random geometric graphs.
热力学条件下空间生灭过程局部统计的泛函中心极限定理
我们给出了在动态泊松过程上定义的局部泛函在过程水平上的正态逼近结果。我们在这里研究的动力学是马尔可夫生-死过程的动力学。我们在所谓的热力学条件下证明了泛函极限定理。我们的结果适用于随机几何文献中一些感兴趣的函数,包括随机几何图中的子图和分量计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信