Yaozhong Hu, Michael A. Kouritzin, Panqiu Xia, Jiayu Zheng
{"title":"On mean-field super-Brownian motions","authors":"Yaozhong Hu, Michael A. Kouritzin, Panqiu Xia, Jiayu Zheng","doi":"10.1214/22-aap1909","DOIUrl":null,"url":null,"abstract":"The mean-field stochastic partial differential equation (SPDE) corresponding to a mean-field super-Brownian motion (sBm) is obtained and studied. In this mean-field sBm, the branching-particle lifetime is allowed to depend upon the probability distribution of the sBm itself, producing an SPDE whose space-time white noise coefficient has, in addition to the typical sBm square root, an extra factor that is a function of the probability law of the density of the mean-field sBm. This novel mean-field SPDE is thus motivated by population models where things like overcrowding and isolation can affect growth. A two step approximation method is employed to show the existence for this SPDE under general conditions. Then, mild moment conditions are imposed to get uniqueness. Finally, smoothness of the SPDE solution is established under a further simplifying condition.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"15 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1909","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
The mean-field stochastic partial differential equation (SPDE) corresponding to a mean-field super-Brownian motion (sBm) is obtained and studied. In this mean-field sBm, the branching-particle lifetime is allowed to depend upon the probability distribution of the sBm itself, producing an SPDE whose space-time white noise coefficient has, in addition to the typical sBm square root, an extra factor that is a function of the probability law of the density of the mean-field sBm. This novel mean-field SPDE is thus motivated by population models where things like overcrowding and isolation can affect growth. A two step approximation method is employed to show the existence for this SPDE under general conditions. Then, mild moment conditions are imposed to get uniqueness. Finally, smoothness of the SPDE solution is established under a further simplifying condition.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.