On mean-field super-Brownian motions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaozhong Hu, Michael A. Kouritzin, Panqiu Xia, Jiayu Zheng
{"title":"On mean-field super-Brownian motions","authors":"Yaozhong Hu, Michael A. Kouritzin, Panqiu Xia, Jiayu Zheng","doi":"10.1214/22-aap1909","DOIUrl":null,"url":null,"abstract":"The mean-field stochastic partial differential equation (SPDE) corresponding to a mean-field super-Brownian motion (sBm) is obtained and studied. In this mean-field sBm, the branching-particle lifetime is allowed to depend upon the probability distribution of the sBm itself, producing an SPDE whose space-time white noise coefficient has, in addition to the typical sBm square root, an extra factor that is a function of the probability law of the density of the mean-field sBm. This novel mean-field SPDE is thus motivated by population models where things like overcrowding and isolation can affect growth. A two step approximation method is employed to show the existence for this SPDE under general conditions. Then, mild moment conditions are imposed to get uniqueness. Finally, smoothness of the SPDE solution is established under a further simplifying condition.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1909","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The mean-field stochastic partial differential equation (SPDE) corresponding to a mean-field super-Brownian motion (sBm) is obtained and studied. In this mean-field sBm, the branching-particle lifetime is allowed to depend upon the probability distribution of the sBm itself, producing an SPDE whose space-time white noise coefficient has, in addition to the typical sBm square root, an extra factor that is a function of the probability law of the density of the mean-field sBm. This novel mean-field SPDE is thus motivated by population models where things like overcrowding and isolation can affect growth. A two step approximation method is employed to show the existence for this SPDE under general conditions. Then, mild moment conditions are imposed to get uniqueness. Finally, smoothness of the SPDE solution is established under a further simplifying condition.
关于平均场超布朗运动
研究了平均场超布朗运动的平均场随机偏微分方程(SPDE)。在这种平均场sBm中,允许分支粒子寿命取决于sBm本身的概率分布,从而产生一个SPDE,其时空白噪声系数除了具有典型sBm的平方根外,还有一个额外的因子,该因子是平均场sBm密度的概率律的函数。因此,这种新颖的平均场SPDE是由人口模型驱动的,在人口模型中,过度拥挤和孤立等因素会影响增长。用两步逼近法证明了该SPDE在一般条件下的存在性。然后,施加温和矩条件以获得唯一性。最后,在进一步简化的条件下,建立了SPDE解的平滑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信