Grandhys Setyo Utomo, Ema Rachmawati, Febryanti Sthevanie
{"title":"Fatigue Detection Through Car Driver’s Face Using Boosting Local Binary Patterns","authors":"Grandhys Setyo Utomo, Ema Rachmawati, Febryanti Sthevanie","doi":"10.29207/resti.v7i5.4798","DOIUrl":null,"url":null,"abstract":"The general population is concerned with traffic accidents. Driver fatigue is one of the leading causes of car accidents. Several factors, including nighttime driving, sleep deprivation, alcohol consumption, driving on monotonous roads, and drowsy and fatigue-inducing drugs, can contribute to fatigue. This study proposes a facial appearance-based driver fatigue detection system. This is based on the assumption that facial features can be used to identify driver fatigue. We categorize driver conditions into three groups: normal, talking, and yawning. In this study, we used Adaboost to propose Boosting Local Binary Patterns (LBP) to improve the image features of fatigue drivers in the Support Vector Machine (SVM) model. The experimental results indicate that the system's optimal performance achieves an accuracy value of 93.68%, a recall value of 94%, and a precision value of 94%.
 
","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i5.4798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The general population is concerned with traffic accidents. Driver fatigue is one of the leading causes of car accidents. Several factors, including nighttime driving, sleep deprivation, alcohol consumption, driving on monotonous roads, and drowsy and fatigue-inducing drugs, can contribute to fatigue. This study proposes a facial appearance-based driver fatigue detection system. This is based on the assumption that facial features can be used to identify driver fatigue. We categorize driver conditions into three groups: normal, talking, and yawning. In this study, we used Adaboost to propose Boosting Local Binary Patterns (LBP) to improve the image features of fatigue drivers in the Support Vector Machine (SVM) model. The experimental results indicate that the system's optimal performance achieves an accuracy value of 93.68%, a recall value of 94%, and a precision value of 94%.