Tsubasa Kodaira, Tomotaka Katsuno, Takehiko Nose, Motoyo Itoh, Jean Rabault, Mario Hoppmann, Masafumi Kimizuka, Takuji Waseda
{"title":"An affordable and customizable wave buoy for the study of wave-ice interactions: design concept and results from field deployments","authors":"Tsubasa Kodaira, Tomotaka Katsuno, Takehiko Nose, Motoyo Itoh, Jean Rabault, Mario Hoppmann, Masafumi Kimizuka, Takuji Waseda","doi":"10.1080/21664250.2023.2249243","DOIUrl":null,"url":null,"abstract":"In the polar regions, the interaction between waves and ice has a crucial impact on the seasonal change in the sea ice extent. However, our comprehension of this phenomenon is restricted by a lack of observations, which, in turn, results in the exclusion of associated processes from numerical models. In recent years, availability of the low-cost and accurate Inertial Motion Units has enabled the development of affordable wave research devices. Despite advancements in designing innovative open-source instruments optimized for deployment on ice floes, their customizability and survivability remain limited, especially in open waters. This study presents a novel design concept for an affordable and customizable wave buoy, aimed for wave measurements in marginal ice zones. The central focus of this wave buoy design is the application of 3D printing as rapid prototyping technology. By utilizing the high customizability offered by 3D printing, the previously developed solar-powered wave buoy was customized to install a battery pack to continue the measurements in the high latitudes for more than several months. Preliminary results from field deployments in the Pacific and Arctic Oceans demonstrate that the performance of the instruments is promising. The accuracy of frequency wave spectra measurements is found to be comparable to that of considerably more expensive instruments. Finally, the study concludes with a general evaluation of using rapid prototyping technologies for buoy designs and proposes recommendations for future designs.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":"39 3","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2249243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In the polar regions, the interaction between waves and ice has a crucial impact on the seasonal change in the sea ice extent. However, our comprehension of this phenomenon is restricted by a lack of observations, which, in turn, results in the exclusion of associated processes from numerical models. In recent years, availability of the low-cost and accurate Inertial Motion Units has enabled the development of affordable wave research devices. Despite advancements in designing innovative open-source instruments optimized for deployment on ice floes, their customizability and survivability remain limited, especially in open waters. This study presents a novel design concept for an affordable and customizable wave buoy, aimed for wave measurements in marginal ice zones. The central focus of this wave buoy design is the application of 3D printing as rapid prototyping technology. By utilizing the high customizability offered by 3D printing, the previously developed solar-powered wave buoy was customized to install a battery pack to continue the measurements in the high latitudes for more than several months. Preliminary results from field deployments in the Pacific and Arctic Oceans demonstrate that the performance of the instruments is promising. The accuracy of frequency wave spectra measurements is found to be comparable to that of considerably more expensive instruments. Finally, the study concludes with a general evaluation of using rapid prototyping technologies for buoy designs and proposes recommendations for future designs.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.