Optimizing copper removal from synthetic water using electrocoagulation and response surface methodology

Arouna Dolo, Adama Tolofoudye, Abdoulaye Diamoutene, Djiky Kouyaté
{"title":"Optimizing copper removal from synthetic water using electrocoagulation and response surface methodology","authors":"Arouna Dolo, Adama Tolofoudye, Abdoulaye Diamoutene, Djiky Kouyaté","doi":"10.4314/ijbcs.v17i5.29","DOIUrl":null,"url":null,"abstract":"The purification of water and wastewater requires a lot of energy and large amounts of chemicals can still be used with conventional techniques. The electrocoagulation (EC) method, an electrochemical treatment approach, has been suggested as a more cost-effective and environmentally friendly alternative. In this study, the removal of copper from synthetic water was investigated using EC technique. Box-Behnken Design (BBD) and Response Surface Methodology (RSM) were applied to optimize operating parameters such as current density, electrolysis time and initial pH. Analysis of variance (ANOVA) was used to assess the effect of factors and their interactions, and multiple regression analysis was used to fit it to a second-order polynomial equation. According to the results, current density had the greatest impact on copper removal. A current density of 7.24 mA/cm², a reaction time of 27.43 minutes, and an initial pH value of 7.56 were determined to be optimal conditions. Under these optimal conditions, the copper removal efficiency was 97.5%. Therefore, EC combines with RSM is an efficient treatment approach for copper-contaminated water.","PeriodicalId":13808,"journal":{"name":"International Journal of Biological and Chemical Sciences","volume":"69 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological and Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/ijbcs.v17i5.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The purification of water and wastewater requires a lot of energy and large amounts of chemicals can still be used with conventional techniques. The electrocoagulation (EC) method, an electrochemical treatment approach, has been suggested as a more cost-effective and environmentally friendly alternative. In this study, the removal of copper from synthetic water was investigated using EC technique. Box-Behnken Design (BBD) and Response Surface Methodology (RSM) were applied to optimize operating parameters such as current density, electrolysis time and initial pH. Analysis of variance (ANOVA) was used to assess the effect of factors and their interactions, and multiple regression analysis was used to fit it to a second-order polynomial equation. According to the results, current density had the greatest impact on copper removal. A current density of 7.24 mA/cm², a reaction time of 27.43 minutes, and an initial pH value of 7.56 were determined to be optimal conditions. Under these optimal conditions, the copper removal efficiency was 97.5%. Therefore, EC combines with RSM is an efficient treatment approach for copper-contaminated water.
利用电絮凝和响应面法优化合成水中铜的去除
水和废水的净化需要大量的能源,而传统技术仍然可以使用大量的化学品。电混凝(EC)法是一种更经济、更环保的电化学处理方法。研究了电催化脱除合成水中的铜。采用Box-Behnken设计(BBD)和响应面法(RSM)对电流密度、电解时间和初始ph等运行参数进行优化,采用方差分析(ANOVA)评价各因素的影响及其相互作用,并采用多元回归分析拟合二阶多项式方程。结果表明,电流密度对除铜效果的影响最大。最佳条件为电流密度为7.24 mA/cm²,反应时间为27.43 min,初始pH为7.56。在此条件下,铜的去除率为97.5%。因此,EC联合RSM是处理铜污染水的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信