Predicting the Finite Population Distribution Function under a Multilevel Model

Sumonkanti Das, Nicola Salvati, Ray Chambers
{"title":"Predicting the Finite Population Distribution Function under a Multilevel Model","authors":"Sumonkanti Das, Nicola Salvati, Ray Chambers","doi":"10.1177/00080683231190258","DOIUrl":null,"url":null,"abstract":"Chambers and Dunstan proposed a model-based predictor of the population distribution function that makes use of auxiliary population information under a general sampling design. Subsequently, Rao, Kovar, and Mantel proposed design-based ratio and difference predictors of the population distribution function that also use this auxiliary information. Both predictors (CD and RKM) assume a single level model for the target population. In this article we develop predictors of the finite population distribution function for a population that follows a multilevel model. These new predictors use the same smearing approach underpinning the CD predictor. We compare our new predictors with the CD and RKM predictors via design-based simulation, and show that they perform better than these single level predictors when there is significant intra-cluster correlation. The performances of these new two level predictors are also examined via an empirical study based on data from a large-scale UK business survey aimed at estimating the distribution of hourly pay rates. AMS subject classification: Primary 62G30, Secondary 62G32","PeriodicalId":487287,"journal":{"name":"Calcutta Statistical Association Bulletin","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcutta Statistical Association Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00080683231190258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chambers and Dunstan proposed a model-based predictor of the population distribution function that makes use of auxiliary population information under a general sampling design. Subsequently, Rao, Kovar, and Mantel proposed design-based ratio and difference predictors of the population distribution function that also use this auxiliary information. Both predictors (CD and RKM) assume a single level model for the target population. In this article we develop predictors of the finite population distribution function for a population that follows a multilevel model. These new predictors use the same smearing approach underpinning the CD predictor. We compare our new predictors with the CD and RKM predictors via design-based simulation, and show that they perform better than these single level predictors when there is significant intra-cluster correlation. The performances of these new two level predictors are also examined via an empirical study based on data from a large-scale UK business survey aimed at estimating the distribution of hourly pay rates. AMS subject classification: Primary 62G30, Secondary 62G32
多层模型下有限总体分布函数的预测
Chambers和Dunstan提出了一种基于模型的总体分布函数预测器,该预测器利用一般抽样设计下的辅助总体信息。随后,Rao、Kovar和Mantel提出了基于设计的人口分布函数的比率和差异预测因子,也使用了这些辅助信息。两种预测因子(CD和RKM)都假设目标人群的单一水平模型。在本文中,我们为遵循多层模型的总体开发有限总体分布函数的预测器。这些新的预测器使用与CD预测器相同的涂抹方法。我们通过基于设计的模拟将我们的新预测因子与CD和RKM预测因子进行了比较,并表明当存在显著的集群内相关性时,它们比这些单水平预测因子表现更好。通过一项基于大规模英国商业调查数据的实证研究,这些新的两级预测指标的表现也得到了检验,该调查旨在估计小时工资率的分布。AMS学科分类:小学62G30,中学62G32
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信