NON-CLASSICAL OPTIMAL CONTROL PROBLEM: A CASE STUDY FOR CONTINUOUS APPROXIMATION OF FOUR-STEPWISE FUNCTION

IF 0.2 Q4 MATHEMATICS, APPLIED
Wan Noor Afifah Wan Ahmad, Suliadi Firdaus Sufahani, Mahmod Abd Hakim Mohamad, Mohd Saifullah Rusiman, Mohd Zulariffin Md Maarof, Muhamad Ali Imran Kamarudin
{"title":"NON-CLASSICAL OPTIMAL CONTROL PROBLEM: A CASE STUDY FOR CONTINUOUS APPROXIMATION OF FOUR-STEPWISE FUNCTION","authors":"Wan Noor Afifah Wan Ahmad, Suliadi Firdaus Sufahani, Mahmod Abd Hakim Mohamad, Mohd Saifullah Rusiman, Mohd Zulariffin Md Maarof, Muhamad Ali Imran Kamarudin","doi":"10.17654/0974324323017","DOIUrl":null,"url":null,"abstract":"The numerical properties of a contemporary optimal control problem (OCP) within the realm of financial aspects deviate from the conventional OCP framework. In our specific scenario, the final state condition is unknown, while the integrand exhibits a piecewise capacity that aligns with the unknown terminal state value. Since this is not a classical OCP, it cannot be solved using Pontryagin’s maximum approach under the expected end limit conditions. A free final state in the non-classical issue results in a critical limit condition of the final shadow value not being equal to zero. The new fundamental condition must be comparable to a particular necessary condition because the integrand is a part of the unidentified final state value. By employing the hyperbolic tangent (tanh) function, we showcase a continuous approximation of the piecewise constant integrand function. Furthermore, we tackle a specific scenario utilizing the shooting method in C++ programming language. This is by combining the Newton and Golden Section Search methods in the shooting technique to calculate the limiting free final state value in an external circle emphasis. Discretization methods such as Euler and Runge-Kutta approximations were used in the validation procedure. The program was constructed in AMPL programming language with MINOS solver. Received: July 11, 2023Accepted: August 19, 2023","PeriodicalId":41162,"journal":{"name":"Advances in Differential Equations and Control Processes","volume":"79 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations and Control Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974324323017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical properties of a contemporary optimal control problem (OCP) within the realm of financial aspects deviate from the conventional OCP framework. In our specific scenario, the final state condition is unknown, while the integrand exhibits a piecewise capacity that aligns with the unknown terminal state value. Since this is not a classical OCP, it cannot be solved using Pontryagin’s maximum approach under the expected end limit conditions. A free final state in the non-classical issue results in a critical limit condition of the final shadow value not being equal to zero. The new fundamental condition must be comparable to a particular necessary condition because the integrand is a part of the unidentified final state value. By employing the hyperbolic tangent (tanh) function, we showcase a continuous approximation of the piecewise constant integrand function. Furthermore, we tackle a specific scenario utilizing the shooting method in C++ programming language. This is by combining the Newton and Golden Section Search methods in the shooting technique to calculate the limiting free final state value in an external circle emphasis. Discretization methods such as Euler and Runge-Kutta approximations were used in the validation procedure. The program was constructed in AMPL programming language with MINOS solver. Received: July 11, 2023Accepted: August 19, 2023
非经典最优控制问题:四阶函数连续逼近的实例研究
当代最优控制问题(OCP)在金融领域的数值性质偏离了传统的OCP框架。在我们的特定场景中,最终状态条件是未知的,而被积体显示出与未知的终端状态值一致的分段容量。由于这不是一个经典的OCP,在期望端点极限条件下,它不能用庞特里亚金极大值法求解。非经典问题的自由最终状态导致最终阴影值不等于零的临界极限条件。新的基本条件必须与特定的必要条件相比较,因为被积数是未确定的最终状态值的一部分。通过使用双曲正切(tanh)函数,我们展示了分段常数被积函数的连续逼近。此外,我们还利用c++编程语言中的射击方法解决了一个特定的场景。这是通过结合拍摄技术中的牛顿法和黄金分割搜索法来计算外圆强调的极限自由最终状态值。离散化方法,如欧拉和龙格-库塔近似在验证过程中使用。程序采用AMPL编程语言,用MINOS求解器构建。收稿日期:2023年7月11日。收稿日期:2023年8月19日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信