<i>In Situ</i> Synchrotron X-ray Analysis: Application of High-Pressure Sliding Process to Ti Allotropic Transformation

IF 0.5 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Zenji Horita, Daisuke Maruno, Yukimasa Ikeda, Takahiro Masuda, Yongpeng Tang, Makoto Arita, Yuji Higo, Yoshinori Tange, Yasuo Ohishi
{"title":"&lt;i&gt;In Situ&lt;/i&gt; Synchrotron X-ray Analysis: Application of High-Pressure Sliding Process to Ti Allotropic Transformation","authors":"Zenji Horita, Daisuke Maruno, Yukimasa Ikeda, Takahiro Masuda, Yongpeng Tang, Makoto Arita, Yuji Higo, Yoshinori Tange, Yasuo Ohishi","doi":"10.2320/jinstmet.j2022040","DOIUrl":null,"url":null,"abstract":"In this study, severe plastic deformation through high-pressure sliding (HPS) was applied for in situ high-energy X-ray diffraction analysis at SPring-8 in JASRI (Japan Synchrotron Radiation Research Institute). Allotropic transformation of pure Ti was examined in terms of temperatures, pressures and imposed strain using a miniaturized HPS facility. The true pressure applied on the sample was estimated from the peak shift. Peak broadening due to local variation of pressure was reduced using white X-ray. The phase transformation from α phase to ω phase occurred at a pressure of ∼4.5 GPa. Straining by the HPS processing was effective to promote the transformation to the ω phase and to maintain the ω phase even at ambient pressure. The reverse transformation from ω phase to α phase occurred at a temperature of ∼110℃ under ambient pressure, while under higher pressure as ∼4 GPa, the ω phase remained stable even at ∼170℃ covered in this study. It was suggested that the reverse transformation from the ω phase to the α phase is controlled by thermal energy.","PeriodicalId":17337,"journal":{"name":"Journal of The Japan Institute of Metals","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Institute of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/jinstmet.j2022040","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, severe plastic deformation through high-pressure sliding (HPS) was applied for in situ high-energy X-ray diffraction analysis at SPring-8 in JASRI (Japan Synchrotron Radiation Research Institute). Allotropic transformation of pure Ti was examined in terms of temperatures, pressures and imposed strain using a miniaturized HPS facility. The true pressure applied on the sample was estimated from the peak shift. Peak broadening due to local variation of pressure was reduced using white X-ray. The phase transformation from α phase to ω phase occurred at a pressure of ∼4.5 GPa. Straining by the HPS processing was effective to promote the transformation to the ω phase and to maintain the ω phase even at ambient pressure. The reverse transformation from ω phase to α phase occurred at a temperature of ∼110℃ under ambient pressure, while under higher pressure as ∼4 GPa, the ω phase remained stable even at ∼170℃ covered in this study. It was suggested that the reverse transformation from the ω phase to the α phase is controlled by thermal energy.
& lt; i> Situ< / i>同步加速器x射线分析:高压滑动过程在钛同素异向相变中的应用
本研究利用日本同步辐射研究所(JASRI)的SPring-8进行了高压滑动剧烈塑性变形(HPS)的原位高能x射线衍射分析。利用小型HPS装置,从温度、压力和施加应变等方面研究了纯Ti的同素异形体转变。施加在样品上的真实压力由峰值位移估计。利用白x射线减少了局部压力变化引起的峰展宽。在~ 4.5 GPa的压力下,从α相转变为ω相。HPS应变处理能有效促进合金向ω相转变,并在常温下仍能保持ω相。在环境压力下,ω相向α相的反向转变发生在温度为~ 110℃时,而在更高的压力(~ 4 GPa)下,ω相即使在本研究覆盖的~ 170℃也保持稳定。从ω相到α相的反向转变是由热能控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Japan Institute of Metals
Journal of The Japan Institute of Metals 工程技术-冶金工程
CiteScore
0.70
自引率
0.00%
发文量
27
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信