Sang-Hoon Kim, Jaehoon Shim, Euidong Lee, Seongyeop Jeong, Ilkueon Kang, Jin-Soo Kim
{"title":"Empowering Storage Systems Research with NVMeVirt: A Comprehensive NVMe Device Emulator","authors":"Sang-Hoon Kim, Jaehoon Shim, Euidong Lee, Seongyeop Jeong, Ilkueon Kang, Jin-Soo Kim","doi":"10.1145/3625006","DOIUrl":null,"url":null,"abstract":"There have been drastic changes in the storage device landscape recently. At the center of the diverse storage landscape lies the NVMe interface, which allows high-performance and flexible communication models required by these next-generation device types. However, its hardware-oriented definition and specification are bottlenecking the development and evaluation cycle for new revolutionary storage devices. Furthermore, existing emulators lack the capability to support the advanced storage configurations that are currently in the spotlight. In this paper, we present NVMeVirt, a novel approach to facilitate software-defined NVMe devices. A user can define any NVMe device type with custom features, and NVMeVirt allows it to bridge the gap between the host I/O stack and the virtual NVMe device in software. We demonstrate the advantages and features of NVMeVirt by realizing various storage types and configurations, such as conventional SSDs, low-latency high-bandwidth NVM SSDs, zoned namespace SSDs, and key-value SSDs with the support of PCI peer-to-peer DMA and NVMe-oF target offloading. We also make cases for storage research with NVMeVirt, such as studying the performance characteristics of database engines and extending the NVMe specification for the improved key-value SSD performance.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"4 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625006","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
There have been drastic changes in the storage device landscape recently. At the center of the diverse storage landscape lies the NVMe interface, which allows high-performance and flexible communication models required by these next-generation device types. However, its hardware-oriented definition and specification are bottlenecking the development and evaluation cycle for new revolutionary storage devices. Furthermore, existing emulators lack the capability to support the advanced storage configurations that are currently in the spotlight. In this paper, we present NVMeVirt, a novel approach to facilitate software-defined NVMe devices. A user can define any NVMe device type with custom features, and NVMeVirt allows it to bridge the gap between the host I/O stack and the virtual NVMe device in software. We demonstrate the advantages and features of NVMeVirt by realizing various storage types and configurations, such as conventional SSDs, low-latency high-bandwidth NVM SSDs, zoned namespace SSDs, and key-value SSDs with the support of PCI peer-to-peer DMA and NVMe-oF target offloading. We also make cases for storage research with NVMeVirt, such as studying the performance characteristics of database engines and extending the NVMe specification for the improved key-value SSD performance.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.