Forecasting and Evaluation of Non-Performing Loans in the Turkish Banking Sector

Hazar Altınbaş, Gülay Hanişoğlu
{"title":"Forecasting and Evaluation of Non-Performing Loans in the Turkish Banking Sector","authors":"Hazar Altınbaş, Gülay Hanişoğlu","doi":"10.26650/ibr.2023.52.994354","DOIUrl":null,"url":null,"abstract":"In recent years, there is an increasing trend in non-performing loan levels in Turkey which causes stress both on the real and financial sectors. Increasing non-performing loan volumes are an indication of problems in sectors or the general economy. It is also closely related with the stability of the banking system. It is therefore important for regulatory/ supervisory institutions and banks to be able to predict problematic loan levels successfully, for better policy making and management. For this purpose, non-performing loans to credit ratio in Turkey for the dates between the first quarter of 2015 and fourth quarter of 2019 were forecasted with two machine learning methods, namely random forests and boosted trees, by using data starting from the first quarter of 2003. Lagged values of several macroeconomic, bank-specific and uncertainty factors are included as determinant variables in the analyses. Methods provide insight about the relationship of included variables with non-performing loans. Our results indicate partial dependencies and positive relationship between non-performing loans and inflation, interest rate and capital adequacy ratios, and negative relationship with credit to gross domestic product ratio.","PeriodicalId":483255,"journal":{"name":"Istanbul business research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Istanbul business research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26650/ibr.2023.52.994354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there is an increasing trend in non-performing loan levels in Turkey which causes stress both on the real and financial sectors. Increasing non-performing loan volumes are an indication of problems in sectors or the general economy. It is also closely related with the stability of the banking system. It is therefore important for regulatory/ supervisory institutions and banks to be able to predict problematic loan levels successfully, for better policy making and management. For this purpose, non-performing loans to credit ratio in Turkey for the dates between the first quarter of 2015 and fourth quarter of 2019 were forecasted with two machine learning methods, namely random forests and boosted trees, by using data starting from the first quarter of 2003. Lagged values of several macroeconomic, bank-specific and uncertainty factors are included as determinant variables in the analyses. Methods provide insight about the relationship of included variables with non-performing loans. Our results indicate partial dependencies and positive relationship between non-performing loans and inflation, interest rate and capital adequacy ratios, and negative relationship with credit to gross domestic product ratio.
土耳其银行业不良贷款的预测和评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信