Asset allocation using a Markov process of clustered efficient frontier coefficients states

Q1 Mathematics
Nolan Alexander , William Scherer , Jamey Thompson
{"title":"Asset allocation using a Markov process of clustered efficient frontier coefficients states","authors":"Nolan Alexander ,&nbsp;William Scherer ,&nbsp;Jamey Thompson","doi":"10.1016/j.jfds.2023.100110","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel asset allocation model using a Markov process of states defined by clustered efficient frontier coefficients. While most research in Markov models of the market characterize regimes using return and volatility, we instead propose characterizing these states using efficient frontiers, which provide more information on the interactions of underlying assets that comprise the market. Efficient frontiers can be decomposed to their functional form, a square-root second-order polynomial defined by three coefficients, to provide a dimensionality reduction of the return vector and covariance matrix. Each month, the proposed model hierarchically clusters the monthly coefficients data up to the current month, to characterize the market states, then defines a Markov process on the sequence of states. To incorporate these states into portfolio optimization, for each state, we calculate the tangency portfolio using only return data in that state. We then take the expectation of these weights for each state, weighted by the probability of transitioning from the current state to each state. To empirically validate our proposed model, we employ three sets of assets that span the market, and show that our proposed model significantly outperforms benchmark portfolios.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"9 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918823000260/pdfft?md5=11224414382844d224bb072b3978b6e7&pid=1-s2.0-S2405918823000260-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918823000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel asset allocation model using a Markov process of states defined by clustered efficient frontier coefficients. While most research in Markov models of the market characterize regimes using return and volatility, we instead propose characterizing these states using efficient frontiers, which provide more information on the interactions of underlying assets that comprise the market. Efficient frontiers can be decomposed to their functional form, a square-root second-order polynomial defined by three coefficients, to provide a dimensionality reduction of the return vector and covariance matrix. Each month, the proposed model hierarchically clusters the monthly coefficients data up to the current month, to characterize the market states, then defines a Markov process on the sequence of states. To incorporate these states into portfolio optimization, for each state, we calculate the tangency portfolio using only return data in that state. We then take the expectation of these weights for each state, weighted by the probability of transitioning from the current state to each state. To empirically validate our proposed model, we employ three sets of assets that span the market, and show that our proposed model significantly outperforms benchmark portfolios.

利用聚类有效前沿系数状态的马尔可夫过程进行资产配置
我们提出了一种新颖的资产配置模型,该模型采用了由聚类有效前沿系数定义的马尔可夫状态过程。市场马尔可夫模型的大多数研究都是利用收益率和波动率来描述市场状态的,而我们则建议利用有效前沿来描述这些状态,因为有效前沿提供了更多关于构成市场的基础资产之间相互作用的信息。有效前沿可分解为其函数形式,即由三个系数定义的平方根二阶多项式,从而降低回报向量和协方差矩阵的维度。每个月,所提出的模型都会对截至当月的月度系数数据进行分层聚类,以描述市场状态,然后在状态序列上定义马尔可夫过程。为了将这些状态纳入投资组合优化,对于每个状态,我们仅使用该状态下的收益数据计算切线投资组合。然后,我们根据从当前状态过渡到每种状态的概率,对每种状态的权重进行加权,求出这些权重的期望值。为了对我们提出的模型进行实证验证,我们采用了三组跨市场的资产,结果表明我们提出的模型明显优于基准投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信