Zhigang Du , Sunxuan Zhang , Zijia Yao , Zhenyu Zhou , Muhammad Tariq
{"title":"Attack-detection and multi-clock source cooperation-based accurate time synchronization for PLC-AIoT in smart parks","authors":"Zhigang Du , Sunxuan Zhang , Zijia Yao , Zhenyu Zhou , Muhammad Tariq","doi":"10.1016/j.dcan.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Power Line Communications-Artificial Intelligence of Things (PLC-AIoT) combines the low cost and high coverage of PLC with the learning ability of Artificial Intelligence (AI) to provide data collection and transmission capabilities for PLC-AIoT devices in smart parks. With the development of smart parks, their emerging services require secure and accurate time synchronization of PLC-AIoT devices. However, the impact of attackers on the accuracy of time synchronization cannot be ignored. To solve the aforementioned problems, we propose a tampering attack-aware Deep Q-Network (DQN)-based time synchronization algorithm. First, we construct an abnormal clock source detection model. Then, the abnormal clock source is detected and excluded by comparing the time synchronization information between the device and the gateway. Finally, the proposed algorithm realizes the joint guarantee of high accuracy and low delay for PLC-AIoT in smart parks by intelligently selecting the multi-clock source cooperation strategy and timing weights. Simulation results show that the proposed algorithm has better time synchronization delay and accuracy performance.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1732-1740"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001554","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Power Line Communications-Artificial Intelligence of Things (PLC-AIoT) combines the low cost and high coverage of PLC with the learning ability of Artificial Intelligence (AI) to provide data collection and transmission capabilities for PLC-AIoT devices in smart parks. With the development of smart parks, their emerging services require secure and accurate time synchronization of PLC-AIoT devices. However, the impact of attackers on the accuracy of time synchronization cannot be ignored. To solve the aforementioned problems, we propose a tampering attack-aware Deep Q-Network (DQN)-based time synchronization algorithm. First, we construct an abnormal clock source detection model. Then, the abnormal clock source is detected and excluded by comparing the time synchronization information between the device and the gateway. Finally, the proposed algorithm realizes the joint guarantee of high accuracy and low delay for PLC-AIoT in smart parks by intelligently selecting the multi-clock source cooperation strategy and timing weights. Simulation results show that the proposed algorithm has better time synchronization delay and accuracy performance.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.