Lower bounds at infinity for solutions to second order elliptic equations

IF 0.8 4区 数学 Q2 MATHEMATICS
Tu Nguyen
{"title":"Lower bounds at infinity for solutions to second order elliptic equations","authors":"Tu Nguyen","doi":"10.58997/ejde.2023.69","DOIUrl":null,"url":null,"abstract":"We study lower bounds at infinity for solutions to $$ |Pu|\\leq M|x|^{-\\delta_1}|\\nabla u|+M|x|^{-\\delta_{0}}|u| $$ where $P$ is a second order elliptic operator. Our results are of quantitative nature and generalize those obtained in [3,6].
 For more information see https://ejde.math.txstate.edu/Volumes/2023/69/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"223 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.69","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study lower bounds at infinity for solutions to $$ |Pu|\leq M|x|^{-\delta_1}|\nabla u|+M|x|^{-\delta_{0}}|u| $$ where $P$ is a second order elliptic operator. Our results are of quantitative nature and generalize those obtained in [3,6]. For more information see https://ejde.math.txstate.edu/Volumes/2023/69/abstr.html
二阶椭圆方程无穷远处解的下界
我们研究了$$ |Pu|\leq M|x|^{-\delta_1}|\nabla u|+M|x|^{-\delta_{0}}|u| $$解在无穷远处的下界,其中$P$是一个二阶椭圆算子。我们的结果是定量的,并推广了[3,6]中的结果。
欲了解更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/69/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信