{"title":"Examination of the effect of bupivacaine on brain tissue in rats with induced experimental renal failure","authors":"Nezir Yılmaz, Mehmet Tepe, Öznur Uludağ","doi":"10.28982/josam.7924","DOIUrl":null,"url":null,"abstract":"Background/Aim: Local anesthetics are frequently used and often considered harmless, but they can precipitate local anesthetic systemic toxicity (LAST) when accidentally administered intravascularly or when a toxic dose is rapidly absorbed, which can result in mortality. In cases of renal function impairment, the altered pharmacokinetics of local anesthetics lead to a lowered toxicity threshold. In this study, the aim was to histopathologically investigate the increase in neurotoxicity in the central nervous system due to bupivacaine in experimental renal failure. Methods: In the study, a total of 28 male Wistar albino rats, aged 8-10 weeks, were evenly divided into four groups: Group C (control group) received intraperitoneal 1 mL/kg saline; Group G (glycerol group) received intramuscular 10 mL/kg glycerol, Group GB (glycerol+bupivacaine group) received intramuscular 10 mL/kg glycerol followed by intraperitoneal 4 mg/kg bupivacaine; and Group B (bupivacaine group) received intraperitoneal 4 mg/kg bupivacaine. All rats were sacrificed after the experimental period. Tissue samples were preserved and stained with hematoxylin-eosin for histopathological analyses. TRPM2 and Reelin levels in brain tissue were measured using immunohistochemical methods. Results: In the histopathological examination, Group G exhibited higher Reelin and TRPM2 levels compared to all other groups (P<0.001). In Group GB, both Reelin and TRPM2 immunoreactivity were significantly higher compared to Group B (P<0.001). Conclusion: It can be concluded that renal dysfunction increases neurotoxicity in brain tissue associated with bupivacaine.","PeriodicalId":30878,"journal":{"name":"International Journal of Surgery and Medicine","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surgery and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28982/josam.7924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Aim: Local anesthetics are frequently used and often considered harmless, but they can precipitate local anesthetic systemic toxicity (LAST) when accidentally administered intravascularly or when a toxic dose is rapidly absorbed, which can result in mortality. In cases of renal function impairment, the altered pharmacokinetics of local anesthetics lead to a lowered toxicity threshold. In this study, the aim was to histopathologically investigate the increase in neurotoxicity in the central nervous system due to bupivacaine in experimental renal failure. Methods: In the study, a total of 28 male Wistar albino rats, aged 8-10 weeks, were evenly divided into four groups: Group C (control group) received intraperitoneal 1 mL/kg saline; Group G (glycerol group) received intramuscular 10 mL/kg glycerol, Group GB (glycerol+bupivacaine group) received intramuscular 10 mL/kg glycerol followed by intraperitoneal 4 mg/kg bupivacaine; and Group B (bupivacaine group) received intraperitoneal 4 mg/kg bupivacaine. All rats were sacrificed after the experimental period. Tissue samples were preserved and stained with hematoxylin-eosin for histopathological analyses. TRPM2 and Reelin levels in brain tissue were measured using immunohistochemical methods. Results: In the histopathological examination, Group G exhibited higher Reelin and TRPM2 levels compared to all other groups (P<0.001). In Group GB, both Reelin and TRPM2 immunoreactivity were significantly higher compared to Group B (P<0.001). Conclusion: It can be concluded that renal dysfunction increases neurotoxicity in brain tissue associated with bupivacaine.