Power priors for replication studies

test Pub Date : 2023-09-21 DOI:10.1007/s11749-023-00888-5
Samuel Pawel, Frederik Aust, Leonhard Held, Eric-Jan Wagenmakers
{"title":"Power priors for replication studies","authors":"Samuel Pawel, Frederik Aust, Leonhard Held, Eric-Jan Wagenmakers","doi":"10.1007/s11749-023-00888-5","DOIUrl":null,"url":null,"abstract":"Abstract The ongoing replication crisis in science has increased interest in the methodology of replication studies. We propose a novel Bayesian analysis approach using power priors: The likelihood of the original study’s data is raised to the power of $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> , and then used as the prior distribution in the analysis of the replication data. Posterior distribution and Bayes factor hypothesis tests related to the power parameter $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> quantify the degree of compatibility between the original and replication study. Inferences for other parameters, such as effect sizes, dynamically borrow information from the original study. The degree of borrowing depends on the conflict between the two studies. The practical value of the approach is illustrated on data from three replication studies, and the connection to hierarchical modeling approaches explored. We generalize the known connection between normal power priors and normal hierarchical models for fixed parameters and show that normal power prior inferences with a beta prior on the power parameter $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> align with normal hierarchical model inferences using a generalized beta prior on the relative heterogeneity variance $$I^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>I</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> . The connection illustrates that power prior modeling is unnatural from the perspective of hierarchical modeling since it corresponds to specifying priors on a relative rather than an absolute heterogeneity scale.","PeriodicalId":101465,"journal":{"name":"test","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11749-023-00888-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The ongoing replication crisis in science has increased interest in the methodology of replication studies. We propose a novel Bayesian analysis approach using power priors: The likelihood of the original study’s data is raised to the power of $$\alpha $$ α , and then used as the prior distribution in the analysis of the replication data. Posterior distribution and Bayes factor hypothesis tests related to the power parameter $$\alpha $$ α quantify the degree of compatibility between the original and replication study. Inferences for other parameters, such as effect sizes, dynamically borrow information from the original study. The degree of borrowing depends on the conflict between the two studies. The practical value of the approach is illustrated on data from three replication studies, and the connection to hierarchical modeling approaches explored. We generalize the known connection between normal power priors and normal hierarchical models for fixed parameters and show that normal power prior inferences with a beta prior on the power parameter $$\alpha $$ α align with normal hierarchical model inferences using a generalized beta prior on the relative heterogeneity variance $$I^2$$ I 2 . The connection illustrates that power prior modeling is unnatural from the perspective of hierarchical modeling since it corresponds to specifying priors on a relative rather than an absolute heterogeneity scale.

Abstract Image

复制研究的功率先验
科学中持续的重复性危机增加了人们对重复性研究方法的兴趣。我们提出了一种新的贝叶斯分析方法,使用幂先验:将原始研究数据的似然提高到$$\alpha $$ α的幂,然后用作复制数据分析中的先验分布。与功率参数$$\alpha $$ α相关的后验分布和贝叶斯因子假设检验量化了原始研究和复制研究之间的相容程度。对其他参数的推断,如效应大小,动态地从原始研究中借用信息。借鉴的程度取决于两种研究之间的冲突。该方法的实用价值是通过三个复制研究的数据来说明的,并探讨了与分层建模方法的联系。我们对固定参数的正常功率先验和正常层次模型之间的已知联系进行了推广,并表明在功率参数$$\alpha $$ α上具有beta先验的正常功率先验推断与在相对异质性方差$$I^2$$ I 2上使用广义beta先验的正常层次模型推断一致。这种联系说明,从分层建模的角度来看,权力先验建模是不自然的,因为它对应于在相对而不是绝对异质性尺度上指定先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信