Upstream vortices of a sluice gate: an experimental and numerical study

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Reza Norouzi, Parisa Ebadzadeh, Veli Sume, Rasoul Daneshfaraz
{"title":"Upstream vortices of a sluice gate: an experimental and numerical study","authors":"Reza Norouzi, Parisa Ebadzadeh, Veli Sume, Rasoul Daneshfaraz","doi":"10.2166/aqua.2023.269","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to explore the effects of a sill under a standard sluice gate on the development of the intake vortices. In total, 200 experiments were carried out. Sills with different shapes and widths were considered both numerically and experimentally. Results indicated that using a sill changes the flow depth and upstream pressure. Using a silled gate causes a decrease in the amount of air entering the fluid. By increasing the sill width, the vortex intensity reduces and this reduction is further amplified by increasing the approach discharge. The experimental findings are also compared to the results from the numerical model Flow-3D with interesting agreements.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper aims to explore the effects of a sill under a standard sluice gate on the development of the intake vortices. In total, 200 experiments were carried out. Sills with different shapes and widths were considered both numerically and experimentally. Results indicated that using a sill changes the flow depth and upstream pressure. Using a silled gate causes a decrease in the amount of air entering the fluid. By increasing the sill width, the vortex intensity reduces and this reduction is further amplified by increasing the approach discharge. The experimental findings are also compared to the results from the numerical model Flow-3D with interesting agreements.
水闸上游涡的实验与数值研究
摘要本文旨在探讨标准水闸下的闸门对进气涡发展的影响。总共进行了200次实验。在数值和实验上考虑了不同形状和宽度的基板。结果表明,采用储层可以改变流动深度和上游压力。使用闸门可以减少进入流体的空气量。通过增加基栅宽度,旋涡强度减小,并通过增加进近流量进一步放大这种减小。并将实验结果与Flow-3D数值模型的结果进行了比较,结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信