A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension

IF 0.4 Q4 MATHEMATICS
Aykut KAYHAN
{"title":"A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension","authors":"Aykut KAYHAN","doi":"10.36890/iejg.1263203","DOIUrl":null,"url":null,"abstract":"IIn this paper, we examine PNMCV-MCGL biconservative submanifold in a Minkowski space $\\mathbb{E}_1^{n+2}$ with nondiagonalizable shape operator, where PNMCV-MCGL submanifold denotes a submanifold with parallel normalized mean curvature vector and the mean curvature whose gradient is lightlike ($\\langle\\nabla H,\\nabla H\\rangle=0$). We obtain some conditions about connection forms, principal curvatures and some results about them. Then we use them to obtain a classification of such submanifolds. Finally, we showed that there is no biconservative such submanifold in Minkowski space of arbitrary dimension.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"28 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1263203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

IIn this paper, we examine PNMCV-MCGL biconservative submanifold in a Minkowski space $\mathbb{E}_1^{n+2}$ with nondiagonalizable shape operator, where PNMCV-MCGL submanifold denotes a submanifold with parallel normalized mean curvature vector and the mean curvature whose gradient is lightlike ($\langle\nabla H,\nabla H\rangle=0$). We obtain some conditions about connection forms, principal curvatures and some results about them. Then we use them to obtain a classification of such submanifolds. Finally, we showed that there is no biconservative such submanifold in Minkowski space of arbitrary dimension.
任意维Minkowski空间中平行归一化双保守子流形的分类
本文研究了Minkowski空间$\mathbb{E}_1^{n+2}$中具有不可对角形状算子的PNMCV-MCGL双保守子流形,其中PNMCV-MCGL子流形表示具有平行归一化平均曲率矢量且平均曲率梯度为光状($\langle\nabla H,\nabla H\rangle=0$)的子流形。得到了有关连接形式、主曲率的一些条件和一些结果。然后我们利用它们得到了这类子流形的分类。最后,我们证明了在任意维闵可夫斯基空间中不存在双保守子流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信