Classical notions and problems in Thurston geometries

IF 0.4 Q4 MATHEMATICS
Jenő SZİRMAİ
{"title":"Classical notions and problems in Thurston geometries","authors":"Jenő SZİRMAİ","doi":"10.36890/iejg.1221802","DOIUrl":null,"url":null,"abstract":"Of the Thurston geometries, those with constant curvature geometries (Euclidean $ E^3$, hyperbolic $ H^3$, spherical $ S^3$) have been extensively studied, but the other five geometries, $ H^2\\times R$, $ S^2\\times R$, $Nil$, $\\widetilde{SL_2 R}$, $Sol$ have been thoroughly studied only from a differential geometry and topological point of view. However, classical concepts highlighting the beauty and underlying structure of these geometries -- such as geodesic curves and spheres, the lattices, the geodesic triangles and their surfaces, their interior sum of angles and similar statements to those known in constant curvature geometries -- can be formulated. These have not been the focus of attention. In this survey, we summarize our results on this topic and pose additional open questions.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"93 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1221802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Of the Thurston geometries, those with constant curvature geometries (Euclidean $ E^3$, hyperbolic $ H^3$, spherical $ S^3$) have been extensively studied, but the other five geometries, $ H^2\times R$, $ S^2\times R$, $Nil$, $\widetilde{SL_2 R}$, $Sol$ have been thoroughly studied only from a differential geometry and topological point of view. However, classical concepts highlighting the beauty and underlying structure of these geometries -- such as geodesic curves and spheres, the lattices, the geodesic triangles and their surfaces, their interior sum of angles and similar statements to those known in constant curvature geometries -- can be formulated. These have not been the focus of attention. In this survey, we summarize our results on this topic and pose additional open questions.
瑟斯顿几何中的经典概念和问题
在瑟斯顿几何中,具有常曲率的几何(欧几里得E^3$,双曲H^3$,球面S^3$)已被广泛研究,但其他五种几何,$ H^2\乘以R$, $S ^2\乘以R$, $Nil$, $ widetilde{SL_2 R}$, $Sol$仅从微分几何和拓扑的角度进行了深入研究。然而,强调这些几何的美丽和潜在结构的经典概念——如测地线曲线和球体、网格、测地线三角形和它们的表面、它们的内角和以及与常曲率几何中已知的类似的陈述——可以公式化。这些都不是人们关注的焦点。在这项调查中,我们总结了我们在这个主题上的结果,并提出了额外的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信