ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING SOME GENERALIZED EINSTEIN METRIC CONDITIONS

IF 0.4 Q4 MATHEMATICS
Miroslava PETROVİĆ-TORGAŠEV, Ryszard DESZCZ, Małgorzata GŁOGOWSKA, Marian HOTLOŚ, Georges ZAFİNDRATAFA
{"title":"ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING SOME GENERALIZED EINSTEIN METRIC CONDITIONS","authors":"Miroslava PETROVİĆ-TORGAŠEV, Ryszard DESZCZ, Małgorzata GŁOGOWSKA, Marian HOTLOŚ, Georges ZAFİNDRATAFA","doi":"10.36890/iejg.1323352","DOIUrl":null,"url":null,"abstract":"The derivation-commutator $R \\cdot C - C \\cdot R$ of a semi-Riemannian manifold $(M,g)$, $\\dim M \\geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"46 9","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1323352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The derivation-commutator $R \cdot C - C \cdot R$ of a semi-Riemannian manifold $(M,g)$, $\dim M \geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions.
在满足广义爱因斯坦度量条件的半黎曼流形上
微分对易子 $R \cdot C - C \cdot R$ 半黎曼流形的 $(M,g)$, $\dim M \geq 4$由它的黎曼-克里斯托费尔曲率张量构成 $R$ 和Weyl共形曲率张量 $C$,在某些假设下,可以表示为的线性组合 $(0,6)$-立花张量 $Q(A,T)$,其中 $A$ 是对称的 $(0,2)$-张量和 $T$ 广义曲率张量。这些条件构成了广义爱因斯坦度规条件的一类。在这篇综述文章中,我们给出了最近关于流形和子流形,特别是超曲面,满足这些条件的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信