On a Sequence of Slant Submanifolds in Almost Product Riemannian Setting

IF 0.4 Q4 MATHEMATICS
Adara M. BLAGA
{"title":"On a Sequence of Slant Submanifolds in Almost Product Riemannian Setting","authors":"Adara M. BLAGA","doi":"10.36890/iejg.1321401","DOIUrl":null,"url":null,"abstract":"We prove that the property of being pointwise slant is transitive on a class of proper pointwise slant submanifolds of almost product Riemannian manifolds, and illustrate this fact with an example. For a given almost product Riemannian manifold $(M_1,g,\\varphi_1)$, we consider a sequence of pointwise slant submanifolds $(M_{i+1}\\hookrightarrow M_i)_{i\\in \\mathbb{N}^*}$, and we explicitly determine the relation between the slant functions. Moreover, we state this result in a more general case.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":"59 18","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1321401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the property of being pointwise slant is transitive on a class of proper pointwise slant submanifolds of almost product Riemannian manifolds, and illustrate this fact with an example. For a given almost product Riemannian manifold $(M_1,g,\varphi_1)$, we consider a sequence of pointwise slant submanifolds $(M_{i+1}\hookrightarrow M_i)_{i\in \mathbb{N}^*}$, and we explicitly determine the relation between the slant functions. Moreover, we state this result in a more general case.
关于几乎积黎曼集合中的一个倾斜子流形序列
证明了在一类近似乘积黎曼流形的固有点斜子流形上点斜的性质是可传递的,并用一个例子说明了这一事实。对于给定的几乎积黎曼流形$(M_1,g,\varphi_1)$,我们考虑一个点向倾斜子流形$(M_{i+1}\hookrightarrow M_i)_{i\in \mathbb{N}^*}$的序列,并显式地确定了倾斜函数之间的关系。此外,我们在更一般的情况下陈述这个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信