Spectral Preprocessing and Machine Learning Modeling for Discriminating Manufacturing Origins of Mulberry Bast Fiber

Q3 Engineering
Yong Ju Lee, Soon Wan Kweon, Jae Hyeop Kim, Ji Eun Cha, Kwang-Ho Kang, Hyoung Jin Kim
{"title":"Spectral Preprocessing and Machine Learning Modeling for Discriminating Manufacturing Origins of Mulberry Bast Fiber","authors":"Yong Ju Lee, Soon Wan Kweon, Jae Hyeop Kim, Ji Eun Cha, Kwang-Ho Kang, Hyoung Jin Kim","doi":"10.7584/jktappi.2023.10.55.5.61","DOIUrl":null,"url":null,"abstract":"The objective of this study was exploring the impact of spectral data preprocessing techniques on the performance of machine learning models for classifying the origin of mulberry bast fibers. The findings indicated that a selective spectral region (1800-1200 cm-1) significantly improves classification model performance. Among the classifiers tested, Partial Least Squares Discriminant Analysis (PLS-DA) and Support Vector Machines (SVM) demonstrated the highest accuracy. Additionally, A spectral preprocessing with the Norris-Williams algorithm effectively improved model performance within the same classifier for this dataset. These results suggest that applying machine learning modeling with spectral preprocessing can enable the origin classification of mulberry bast fibers and provide a chemical basis for classification rules beyond simple categorization.","PeriodicalId":52548,"journal":{"name":"Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry","volume":"100 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7584/jktappi.2023.10.55.5.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study was exploring the impact of spectral data preprocessing techniques on the performance of machine learning models for classifying the origin of mulberry bast fibers. The findings indicated that a selective spectral region (1800-1200 cm-1) significantly improves classification model performance. Among the classifiers tested, Partial Least Squares Discriminant Analysis (PLS-DA) and Support Vector Machines (SVM) demonstrated the highest accuracy. Additionally, A spectral preprocessing with the Norris-Williams algorithm effectively improved model performance within the same classifier for this dataset. These results suggest that applying machine learning modeling with spectral preprocessing can enable the origin classification of mulberry bast fibers and provide a chemical basis for classification rules beyond simple categorization.
光谱预处理与机器学习建模在桑皮纤维产地鉴别中的应用
本研究的目的是探索光谱数据预处理技术对桑树韧皮纤维来源分类机器学习模型性能的影响。研究结果表明,选择性光谱区域(1800-1200 cm-1)显著提高了分类模型的性能。在测试的分类器中,偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)显示出最高的准确率。此外,使用Norris-Williams算法进行光谱预处理,有效地提高了该数据集在同一分类器内的模型性能。这些结果表明,将机器学习建模与光谱预处理相结合,可以实现桑树韧皮纤维的来源分类,并为分类规则提供超越简单分类的化学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信