Forecasting the number of dengue fever based on weather conditions using ensemble forecasting method

Q2 Decision Sciences
Mursyidatun Nabilah, Raras Tyasnurita, Faizal Mahananto, Wiwik Anggraeni, Retno Aulia Vinarti, Ahmad Muklason
{"title":"Forecasting the number of dengue fever based on weather conditions using ensemble forecasting method","authors":"Mursyidatun Nabilah, Raras Tyasnurita, Faizal Mahananto, Wiwik Anggraeni, Retno Aulia Vinarti, Ahmad Muklason","doi":"10.11591/ijai.v12.i1.pp496-504","DOIUrl":null,"url":null,"abstract":"<p><span lang=\"EN-US\">Dengue fever is still a crucial public health problem in Indonesia, with the highest fatality rate (CFR) is 1.01% in East Java, Malang Regency. One of the solutions to control the death rate and cases is to forecast the cases number. This study proposed ensemble forecasting that build from several penalized regressions. Penalized regressions are able to overcome linear regression analysis’ shortcomings by using penalty values, that will affect regression’s coefficient, resulting on regression model with a slight bias in order to reduce parameter estimations and prediction values' variances. Penalized regressions are evaluated and built as ensemble forecasting method to minimize the shortcomings of other existing model, so it could produce more accurate values comparing to single penalized regression model. The result showed that the ensemble model `consists of smoothly clipped absolute deviation (SCAD) and Elastic-net is sufficient to capture data patterns with root mean squared error (RMSE) 6.38. </span></p>","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp496-504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Dengue fever is still a crucial public health problem in Indonesia, with the highest fatality rate (CFR) is 1.01% in East Java, Malang Regency. One of the solutions to control the death rate and cases is to forecast the cases number. This study proposed ensemble forecasting that build from several penalized regressions. Penalized regressions are able to overcome linear regression analysis’ shortcomings by using penalty values, that will affect regression’s coefficient, resulting on regression model with a slight bias in order to reduce parameter estimations and prediction values' variances. Penalized regressions are evaluated and built as ensemble forecasting method to minimize the shortcomings of other existing model, so it could produce more accurate values comparing to single penalized regression model. The result showed that the ensemble model `consists of smoothly clipped absolute deviation (SCAD) and Elastic-net is sufficient to capture data patterns with root mean squared error (RMSE) 6.38.

利用集合预报方法预测天气条件下登革热发病人数
< <在印度尼西亚,登革热仍然是一个重要的公共卫生问题,马琅县东爪哇的病死率(CFR)最高,为1.01%。控制死亡率和病例数的解决方案之一是预测病例数。本研究提出了基于几个惩罚回归的集合预测。惩罚回归可以克服线性回归分析的缺点,使用惩罚值会影响回归系数,导致回归模型有轻微偏差,以减少参数估计和预测值的方差。惩罚回归作为集合预测方法进行评价和构建,最大限度地减少了其他现有模型的不足,因此与单一惩罚回归模型相比,它可以产生更准确的值。结果表明,由平滑剪裁的绝对偏差(SCAD)和Elastic-net组成的集成模型足以捕获均方根误差(RMSE)为6.38的数据模式。& lt; / span> & lt; / p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信