On Conditional Edge-Fault-Tolerant Strong Menger Edge Connectivity Of Folded Hypercubes

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shijie Zhao, Pingshan Li
{"title":"On Conditional Edge-Fault-Tolerant Strong Menger Edge Connectivity Of Folded Hypercubes","authors":"Shijie Zhao, Pingshan Li","doi":"10.1093/comjnl/bxad018","DOIUrl":null,"url":null,"abstract":"Abstract Edge connectivity is an important parameter for the reliability of the inter-connection network. A graph $G$ is strong Menger edge-connected ($SM$-$\\lambda $ for short) if there exist min$\\{\\deg _{G}(u),\\deg _{G}(v)\\}$ edge-disjoint paths between any pair of vertices $u$ and $v$ of $G$. The conditional edge-fault-tolerance strong Menger edge connectivity of $G$, denoted by $sm_{\\lambda }^{r}(G)$, is the maximum integer $m$ such that $G-F$ remains $SM$-$\\lambda $ for any edge set $F$ with $|F|\\leq m$ and $\\delta (G-F)\\geq r$, where $\\delta (G-F)\\geq r$ is the minimum degree of $G-F$. Most of the previous papers discussed $sm_{\\lambda }^{r}(G)$ in the case of $r\\leq 2$. In this paper, we show that $sm_{\\lambda }^{r}(FQ_{n})=2^{r}(n-r+1)-(n+1)$ for $1\\leq r\\leq n-2$, where $n\\geq 4$.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"18 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxad018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Edge connectivity is an important parameter for the reliability of the inter-connection network. A graph $G$ is strong Menger edge-connected ($SM$-$\lambda $ for short) if there exist min$\{\deg _{G}(u),\deg _{G}(v)\}$ edge-disjoint paths between any pair of vertices $u$ and $v$ of $G$. The conditional edge-fault-tolerance strong Menger edge connectivity of $G$, denoted by $sm_{\lambda }^{r}(G)$, is the maximum integer $m$ such that $G-F$ remains $SM$-$\lambda $ for any edge set $F$ with $|F|\leq m$ and $\delta (G-F)\geq r$, where $\delta (G-F)\geq r$ is the minimum degree of $G-F$. Most of the previous papers discussed $sm_{\lambda }^{r}(G)$ in the case of $r\leq 2$. In this paper, we show that $sm_{\lambda }^{r}(FQ_{n})=2^{r}(n-r+1)-(n+1)$ for $1\leq r\leq n-2$, where $n\geq 4$.
折叠超立方体的条件边容错强Menger边连通性
摘要边缘连通性是衡量互联网络可靠性的一个重要参数。图表 $G$ 是强门格边连通的($SM$-$\lambda $ (简而言之)如果存在最小的$\{\deg _{G}(u),\deg _{G}(v)\}$ 任意顶点对之间的边不相交路径 $u$ 和 $v$ 的 $G$. 条件边-容错强门格边连通性 $G$,表示为 $sm_{\lambda }^{r}(G)$,为最大整数 $m$ 这样 $G-F$ 遗骸 $SM$-$\lambda $ 对于任意边集 $F$ 有 $|F|\leq m$ 和 $\delta (G-F)\geq r$,其中 $\delta (G-F)\geq r$ 最小度是 $G-F$. 之前的大多数论文都讨论过 $sm_{\lambda }^{r}(G)$ 在…的情况下 $r\leq 2$. 在本文中,我们证明了这一点 $sm_{\lambda }^{r}(FQ_{n})=2^{r}(n-r+1)-(n+1)$ 为了 $1\leq r\leq n-2$,其中 $n\geq 4$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信