Low-Cost Alpha Cabin Like Test Box Proposal for the Development of New Acoustic Sound Insulation Materials

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Hatice Mehtap BULUKLU, Filiz BAL KOÇYİĞİT, Ercan KÖSE
{"title":"Low-Cost Alpha Cabin Like Test Box Proposal for the Development of New Acoustic Sound Insulation Materials","authors":"Hatice Mehtap BULUKLU, Filiz BAL KOÇYİĞİT, Ercan KÖSE","doi":"10.35378/gujs.1010472","DOIUrl":null,"url":null,"abstract":"Experimental criteria for sound insulation material recommendation and design have an important share in indoor acoustic control. Among these criteria, laboratories with devices such as impedance tubes, alpha cabins and reverberation rooms used to measure and analyze parameters such as sound transmission loss and sound absorption coefficient have been investigated. In literature, it has been observed that there are studies on acoustic materials and the tests applied to these materials, but the application is more limited. According to research data, an Alpha Cabin model system design that can be used to develop new types of acoustic sound materials has been proposed. In addition to the fact that a large number of experimental measurements can be performed at lower costs using the designed Alpha Cabin model system, many tests can be performed easily for different material designs in a very short time. To perform these tests, the Alpha Cabin system has been designed based on noise and sound insulation. For example, floating flooring, ribbed connection, and so on. Afterward, different insulation materials were used for insulation purposes and standards were achieved. The Alpha Cabin test system, which was designed and developed, overlaps the experimental and theoretical data for 500, 2000, and 4000 Hz when compared with the values of 29.1 dB for 500 Hz, 38.6 dB for 2000 Hz, and 49 dB for 4000 Hz measured in the Acoustic Facade Panel Test Room, and it has been observed that it can be used in the development of new sound insulation materials.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":"56 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.1010472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental criteria for sound insulation material recommendation and design have an important share in indoor acoustic control. Among these criteria, laboratories with devices such as impedance tubes, alpha cabins and reverberation rooms used to measure and analyze parameters such as sound transmission loss and sound absorption coefficient have been investigated. In literature, it has been observed that there are studies on acoustic materials and the tests applied to these materials, but the application is more limited. According to research data, an Alpha Cabin model system design that can be used to develop new types of acoustic sound materials has been proposed. In addition to the fact that a large number of experimental measurements can be performed at lower costs using the designed Alpha Cabin model system, many tests can be performed easily for different material designs in a very short time. To perform these tests, the Alpha Cabin system has been designed based on noise and sound insulation. For example, floating flooring, ribbed connection, and so on. Afterward, different insulation materials were used for insulation purposes and standards were achieved. The Alpha Cabin test system, which was designed and developed, overlaps the experimental and theoretical data for 500, 2000, and 4000 Hz when compared with the values of 29.1 dB for 500 Hz, 38.6 dB for 2000 Hz, and 49 dB for 4000 Hz measured in the Acoustic Facade Panel Test Room, and it has been observed that it can be used in the development of new sound insulation materials.
开发新型隔音材料的低成本Alpha舱样试验箱方案
隔声材料推荐和设计的实验准则在室内声学控制中占有重要的地位。在这些标准中,研究了使用阻抗管、alpha室和混响室等设备测量和分析传声损失和吸声系数等参数的实验室。在文献中,已经观察到对声学材料的研究和对这些材料的测试,但应用比较有限。根据研究数据,提出了一种可用于开发新型声学声学材料的Alpha Cabin模型系统设计。除了使用设计的Alpha Cabin模型系统可以以较低的成本进行大量的实验测量之外,还可以在很短的时间内轻松地对不同的材料设计进行许多测试。为了进行这些测试,Alpha座舱系统基于噪声和隔音进行了设计。例如,浮动地板,肋连接等。之后,不同的绝缘材料用于绝缘目的,并达到标准。设计开发的Alpha Cabin测试系统将500hz、2000 Hz和4000 Hz的实验和理论数据与声学立面板试验室测得的500hz 29.1 dB、2000hz 38.6 dB和4000hz 49 dB的值进行了对比,可以用于新型隔声材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
gazi university journal of science
gazi university journal of science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
11.10%
发文量
87
期刊介绍: The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信