D. C. Wang, C. L. Wu, S. Zhang, C. H. Zhang, D. X. Zhang, X. Y. Sun
{"title":"Cavitation erosion and corrosion-cavitation synergism behaviour of CoCrFeNiMnTi <i> <sub>x</sub> </i> high entropy alloy coatings prepared by laser cladding","authors":"D. C. Wang, C. L. Wu, S. Zhang, C. H. Zhang, D. X. Zhang, X. Y. Sun","doi":"10.1080/1478422x.2023.2259660","DOIUrl":null,"url":null,"abstract":"ABSTRACTCavitation erosion and corrosion-cavitation synergism behavior of CoCrFeNiMnTix (x = 0.5, 1.0, 1.5, 2.0 in atomic ratio) high entropy alloy coatings were analyzed. The sample with x = 1.0 showed the best cavitation erosion resistance due to the low weight loss and the maximum erosion rate. The protective ability of passivation film also displayed an increased first and then decreased tendency with the increase of Ti content as indicated by corrosion-cavitation synergism determined by open circuit potential method under cavitation erosion and quiescence condition. The sample with x = 1.0 displayed good re-passivation ability of passivation film according to open circuit potential behavior under cavitation erosion and quiescence condition. In general, the sample with x = 1.0 exhibited the highest cavitation erosion, the best self-repairing ability of the passivation film under the corrosion-cavitation synergism condition, which showed a great potential in the application of ocean engineering field as fluid-passing parts.KEYWORDS: Laser claddinghigh entropy alloycavitation erosioncorrosion-cavitation synergism Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors gratefully acknowledge to the financial support for this research from National Key Research and Development Program of China (No. 2016YFB1100204), Science and Technology Research Project of Liaoning Province (No. 2018106004 and No. LJKQZ2021050) and Shenyang Science and Technology Funded Project (No. 22-101-0-16 and No. 19-109-1-03).","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"37 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1478422x.2023.2259660","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTCavitation erosion and corrosion-cavitation synergism behavior of CoCrFeNiMnTix (x = 0.5, 1.0, 1.5, 2.0 in atomic ratio) high entropy alloy coatings were analyzed. The sample with x = 1.0 showed the best cavitation erosion resistance due to the low weight loss and the maximum erosion rate. The protective ability of passivation film also displayed an increased first and then decreased tendency with the increase of Ti content as indicated by corrosion-cavitation synergism determined by open circuit potential method under cavitation erosion and quiescence condition. The sample with x = 1.0 displayed good re-passivation ability of passivation film according to open circuit potential behavior under cavitation erosion and quiescence condition. In general, the sample with x = 1.0 exhibited the highest cavitation erosion, the best self-repairing ability of the passivation film under the corrosion-cavitation synergism condition, which showed a great potential in the application of ocean engineering field as fluid-passing parts.KEYWORDS: Laser claddinghigh entropy alloycavitation erosioncorrosion-cavitation synergism Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors gratefully acknowledge to the financial support for this research from National Key Research and Development Program of China (No. 2016YFB1100204), Science and Technology Research Project of Liaoning Province (No. 2018106004 and No. LJKQZ2021050) and Shenyang Science and Technology Funded Project (No. 22-101-0-16 and No. 19-109-1-03).
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.