Reza Heibati, Ramin Alipour-Sarabi, Seyed Mohammad Taghi Bathaee
{"title":"A survey on the most practical signal processing methods in conditional monitoring in wind turbines","authors":"Reza Heibati, Ramin Alipour-Sarabi, Seyed Mohammad Taghi Bathaee","doi":"10.24200/sci.2023.62911.8101","DOIUrl":null,"url":null,"abstract":"In the previous paper, diverse data acquisition methods based on data types for condition monitoring wind turbines is explored. The present study investigates advanced signal processing techniques in the field of condition monitoring of wind turbines. Methods include synchronous sampling, signal decomposition, envelope analysis, statistical evaluation, model-based approaches, Bayesian methods, and artificial intelligence techniques. Comparison and analysis of these methods and their applications in wind turbine fault detection and diagnosis are presented in this coming study. Moreover, the survey encompasses innovative approaches using various data sources, addressing challenges in components like bearings, gearboxes, blades, and generators. Insights into the evolution of data-driven decision-making in the wind energy sector are provided, with a focus on strengths, limitations, and future directions. A summarized table offers an overview of studies, highlighting monitored components, data types, and methods.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"21 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.62911.8101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the previous paper, diverse data acquisition methods based on data types for condition monitoring wind turbines is explored. The present study investigates advanced signal processing techniques in the field of condition monitoring of wind turbines. Methods include synchronous sampling, signal decomposition, envelope analysis, statistical evaluation, model-based approaches, Bayesian methods, and artificial intelligence techniques. Comparison and analysis of these methods and their applications in wind turbine fault detection and diagnosis are presented in this coming study. Moreover, the survey encompasses innovative approaches using various data sources, addressing challenges in components like bearings, gearboxes, blades, and generators. Insights into the evolution of data-driven decision-making in the wind energy sector are provided, with a focus on strengths, limitations, and future directions. A summarized table offers an overview of studies, highlighting monitored components, data types, and methods.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.