Leo Li-Ying Chan , Sarah L. Kessel , Bo Lin , Anna Juncker-Jensen , Paul Weingarten
{"title":"Characterization and comparison of hypoxia inducing factors on tumor growth and metastasis between two- and three-dimensional cancer models","authors":"Leo Li-Ying Chan , Sarah L. Kessel , Bo Lin , Anna Juncker-Jensen , Paul Weingarten","doi":"10.1016/j.slasd.2023.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>The monocarboxylic acid transporter 4 (Mct-4), a downstream biomarker of hypoxia inducing factor (HIF)-1α, is involved in the cellular response to hypoxia, as indicated by the hypoxic response element in its promoter region. Using a tumorsphere assay as an in vitro 3-dimensional (3D) model generated using 384-well ultra-low attachment (ULA) plates for cell proliferation analysis using a plate-based image cytometer, we identify a hypoxic response in the tumorsphere model that is distinct from that of cells grown under 2-dimensional (2D) normoxic conditions and demonstrate a key role for Mct-4 in enabling 3D growth. The tumorsphere model yields evidence of an essential role for Mct-4 in multiple cell lines, which were genetically modified to underexpress and overexpress Mct-4, evidence not apparent in a standard 2D model of growth in the same cell lines. In addition, we identify the effects of overexpressing Mct-4 in cancer cell migration using a transwell chamber assay. We also show that the response to hypoxia may be circumvented by transfection with a CMV promoter driven Mct-4, which confers constitutive 3D growth, wherein tumorsphere growth inhibition by small molecule HIF-1α inhibitors is mitigated. Finally, we demonstrate quantifiable gene/protein expression differences between 2D and 3D cancer models based on the normoxic and hypoxic conditions. Therefore, the tumorsphere 3D model generated using 384-well ULA plates in combination with high-throughput image cytometer is demonstrated to provide a convenient, robust, and reproducible tool and method for the elucidation of mechanisms of action underlying tumor growth and migration in the hypoxic tumor microenvironment.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000771/pdfft?md5=177dab2f5907cc4b2a8d24f9e03b04af&pid=1-s2.0-S2472555223000771-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The monocarboxylic acid transporter 4 (Mct-4), a downstream biomarker of hypoxia inducing factor (HIF)-1α, is involved in the cellular response to hypoxia, as indicated by the hypoxic response element in its promoter region. Using a tumorsphere assay as an in vitro 3-dimensional (3D) model generated using 384-well ultra-low attachment (ULA) plates for cell proliferation analysis using a plate-based image cytometer, we identify a hypoxic response in the tumorsphere model that is distinct from that of cells grown under 2-dimensional (2D) normoxic conditions and demonstrate a key role for Mct-4 in enabling 3D growth. The tumorsphere model yields evidence of an essential role for Mct-4 in multiple cell lines, which were genetically modified to underexpress and overexpress Mct-4, evidence not apparent in a standard 2D model of growth in the same cell lines. In addition, we identify the effects of overexpressing Mct-4 in cancer cell migration using a transwell chamber assay. We also show that the response to hypoxia may be circumvented by transfection with a CMV promoter driven Mct-4, which confers constitutive 3D growth, wherein tumorsphere growth inhibition by small molecule HIF-1α inhibitors is mitigated. Finally, we demonstrate quantifiable gene/protein expression differences between 2D and 3D cancer models based on the normoxic and hypoxic conditions. Therefore, the tumorsphere 3D model generated using 384-well ULA plates in combination with high-throughput image cytometer is demonstrated to provide a convenient, robust, and reproducible tool and method for the elucidation of mechanisms of action underlying tumor growth and migration in the hypoxic tumor microenvironment.